Supporting information

Single photon ionization of methyl isocyanide and the subsequent unimolecular decomposition of its cation: experiment and theory

A. Bellili, Z. Gouid, M.C. Gazeau, N. Fray, Y. Bénilan, J.C. Guillemin, M. Hochlaf, M. Schwell

Table S1: Total energies (in hartree) and calculated and measured adiabatic ionization energies (AIE in eV) of methyl-isocyanide. PBE0 computations correspond to optimization and the other computations are single point computations. CV, SR and Δ ZPVE are also given in eV.

Species	MIC	MIC ⁺				
Total energies						
PBE0/aug-cc-pVDZ	-132.5690023	-132.15762236				
ZPVE/ PBE0/aug-cc-pVDZ	0.0451282493	0.0452429089				
(R)CCSD(T)-F12/cc-VTZ-F12	-132.53976990	-132.12575330				
(R)CCSD(T,fc)/cc-pwCVTZ	-132.49749508	-132.08730401				
(R)CCSD(T,full)/cc-pwCVTZ	-132.64469585	-132.23451014				
(R)CCSD(T)/cc-pVTZ	-132.4889665	-132.0784911				
(R)CCSD(T)cc-pVTZ-DK	-132.4852177	-132.0747609				
Ioniz	zation energies					
$IE((R)CCSD(T)-F12/cc-pVTZ-F12) E_{CCSD(T)-F12(MIC+)}=11.265$						
CV	[(E _{M+;(CCSD(T,full)} -E _{M;CCS}	$[(E_{M+;(CCSD(T,full)}-E_{M;CCSD(T,full)}] - [E_{M+;(CCSD(T,fc))}-$				
	$E_{M;(CCSD(T,fc)]} = 0.000146$					
SR	$[E_{DKH\text{-}CCSD(T)/cc\text{-}pVTZ\text{-}DK(M^+)\text{-}}E_{CCSD(T)/cc\text{-}pVTZ(M^+)}]\text{-}[E_{DKH\text{-}}$					
	$CCSD(T)/cc-pVTZ-DK(M) - E_{CCSD(T)/cc-pVTZ(M)}] = 0.00050$					
ΔΖΡΥΕ	$ZPVE_{(M^+)} - ZPVE_{(M)} = 0.00645$					
AIE (PBE0/aug-cc-pVDZ (opt) //						
(R)CCSD(T)-F12 /cc-pVTZ-F12	(R)CCSD(T)-F12 /cc-pVTZ-F12 11.265					
+CV+SR+ZPVE (SP))						
AIE exp	11.263					

Table S2: Total energies (in Hartree) of the different fragmentation pathways of the resulting cation of methyl isocyanide. ZPE (in eV) is evaluated at the PBE0/aug-cc-pVDZ level using the corresponding anharmonic frequencies. The equilibrium structure of these species is given in Table S4 of the supplementary material. PBE0 computations correspond to optimization and the other computations are single point computations.

Species	Н	H ₂ CNC ⁺	H ₂ CCN ⁺	H ₂	HCCN ⁺	HCNC ⁺	CN	CH ₃ ⁺	HCN	CH ₂ ⁺
PBE0/aug-cc-pVDZ	-0.50065063	-131.5640153	-131.569426088	-1.1638	-130.88384252	-130.8844	-92.612	-39.422	-93.3212	-38.7199
ZPVE/PBE0/aug-cc-pVDZ	0	0.858156328	0.858965069	0.2708609	0.4618863036	0.46383125	0.1346846	0.84979356	0.3982344	0.444222
(R)CCSD(T)-F12 /cc-VTZ-F12	-0.49999462	-131.530538	-131.5532977	-1.17380611	-130.83683417	-130.8441997	-92.59940541	-39.41640706	-93.31048602	-38.70852617
(R)CCSD(T,fc)/cc-pwCVTZ	-0.49980981	-131.49395993	-131.49944760	-1.17211990	-130.809934176	-130.80941376	-92.57286514	-39.40604212	-93.28145583	-38.70027215
(R)CCSD(T,full)/cc-pwCVTZ	-0.49980981	-131.64005646	-131.6461163	-1.17211990	-130.95569713	-130.9551	-92.67109021	-39.45360317	-93.38046832	-38.74744125
(R)CCSD(T)/cc-pVTZ	-0.4998098	-131.4856688	-131.4911709	-1.1721199	-130.80115129	-130.8017593	-92.5656927	-39.4041902	-93,2751288	-38.6986252
(R)CCSD(T)/cc-pVTZ-DK	-0.4998098	-131.4819439	-131.4874734	-1.1721207	-130.79745188	-130.7980222	-92.5626965	-39.4033771	-93.2722222	-38.6978056

Table S3: Calculated and measured appearance energies (AEs in eV) of the different fragmentation pathways of the resulting cation of methyl isocyanide. Δ ZPE (in eV) is evaluated at the PBE0/aug-cc-pVDZ level using the corresponding anharmonic frequencies. CV and SR are for corevalence and scalar relativistic effects. These AEs are deduced using the total energies of Table S2.

m/z	40		39		15	14
Fragmentation channel	$H + H_2CNC^+$	$H + H_2 CCN^+$	$H_2 + HCCN^+$	$H_2 + HCNC^+$	$CN + CH_3^+$	$HCN + CH_2^+$
AE ((R)CCSD(T)-F12 / cc-VTZ-F12 (SP))	13.887	13.237	14.398	14.198	14.257	14.171
AE (PBE0/ aug-cc-pVDZ (opt))	13.723	13.576	14.186	14.171	14.558	14.365
CV	0.030	0.014	0.039	0.004	0.0384	0.027
SR	-0.0006	-0.0014	-0.0013	-0.0003	-0.0016	-0.0006
ZPVE	-0.370	-0.370	-0.495	-0.493	-0.243	-0.385
AE (PBE0/aug-cc-pVDZ (opt) //						
(R)CCSD(T)-F12 /cc-pVTZ-F12	13.499	12.881	13.940	13.708	14.050	13.812
+CV+SR+ZPVE (SP))						
AE exp	12.8 ± 0.05		13.7 ± 0.05		13.9 ± 0.05	13.85 ± 0.05

Table S4: Cartesian coordinates of the methyl-isocyanide, ionized methyl-isocyanide and its fragments as						
obtained after geometry optimizations at the PBE0/aug-cc-pVDZ level of theory.						
CH ₂ NC CH ₂ NC ⁺						

CH ₃	NC	CH_3NC^+
C	0.000000 0.000000 -1.106082	C 0.000000 0.000000 -1.107907
N	0.000000 0.000000 0.30910	N 0.000000 0.000000 0.319344
C	0.000000 0.000000 1.483408	C 0.000000 0.000000 1.454430
Н	0.000000 1.032544 -1.475886	Н 0.000000 1.039300 -1.438183
Η	0.894210 -0.516272 -1.475886	Н 0.900060 -0.519650 -1.438183
Η	-0.894210 -0.516272 -1.475886	Н -0.900060 -0.519650 -1.438183
H ₂ C	NC ⁺	H ₂ CCN ⁺
C	-0.000680 -1.086909 0.000000	C 1.196489 -0.000035 -0.000015
Η	-0.954144 -1.621950 0.000000	Н 1.739530 0.944806 0.000035
Н	0.952285 -1.622854 0.000000	Н 1.739504 -0.944885 0.000035
Ν	0.000000 0.191355 0.000000	C -0.186273 0.000107 0.000001
C	0.000990 1.404463 0.000000	N -1.362904 -0.000050 0.000002
H ₂		HCNC ⁺
Н	0.000000 0.000000 0.372753	C -0.172444 -1.107207 0.000000
Н	0.000000 0.000000 -0.372753	Н -0.966654 -1.857588 0.000000
		N 0.000000 0.099419 0.000000
		C 0.333553 1.300816 0.000000
CH ₃	+	CN
0	0.000000 0.000000 0.000000	C 0.000000 0.000000 0.(2400/
	0.000000 0.000000 0.000002	C 0.000000 0.000000 -0.624806
H	0.000000 0.946215 0.546262	N 0.000000 0.000000 0.535548
H	0.000000 0.000000 -1.092536	
П	+	HCN
		HCN
C	0.000000 0.000000 0.091386	C 0 371799 0 000000 0 293428
H	0.000000 1.035115 -0.274158	N -0.323845 0.000000 1.203700
Н	0.000000 -1.035115 -0.274158	Н 1.019294 0.000000 -0.555700

No.	Symm.	Theo. ^{a)}	Exp. ^{b)}	Type of vibration
ν ₁	a ₁	3071	2966	CH ₃ s-stretching
ν ₂	a ₁	2259	2166	NC stretching
v ₃	a ₁	1427	1429	CH ₃ s-deformation
ν ₄	a ₁	989	945	CN stretching
ν ₅	e	3163	3014	CH ₃ d-stretching
ν ₆	e	1461	1467	CH ₃ d-deformation
ν ₇	e	1130	1129	CH ₃ rocking
ν ₈	e	275	263	CNC bending

Table S5: PBE0/aug-cc-pVDZ anharmonic frequencies (ν , cm⁻¹) of the normal modes of neutral CH₃NC and the type of vibration.

a) This work.

b) Ref. 62.

Figure F1 a-d. Experimental appearance energy (AE) determination of the 4 fragmentation pathways observed, as determined from a fixed energy VMI image taken at a photon energy of hv = 15.5 eV (same data as figure 3). AEs are indicated as red vertical arrows. In each of the figures F1 a to d, the precision interval is estimated to be ±0.05 eV. They are indicated as a red horizontal bars.