SUPPORTING INFORMATION FOR

Direct detection of polar structure formation in helium nanodroplets by beam deflection measurements

John W. Niman,^a Benjamin S. Kamerin,^a Lorenz Kranabetter,^b Daniel J. Merthe,^a Jiří Suchan,^c Petr Slavíček,^{cd} Vitaly V. Kresin^a

^a Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA

^b Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria

^c Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Czech Republic

^d J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic

Contents

- I. $(DMSO)_n$ ion mass spectra
- II. Ab initio calculations: Benchmarking
- III. Mapping of the (DMSO)₂ and (DMSO)₃ potential energy surfaces
- IV. Transition between two dimers at a distance and D5
- V. Transition between the D5 and D1 minima
- VI. Two dimensional free energy surface
- VII. Force field parameters
- VIII. Cartesian coordinates of all structures

References

I. (DMSO)_n ion mass spectra

As described in the main text, deflection profiles of droplets doped with DMSO monomers, dimers, or trimers were acquired by setting the mass spectrometer to the masses of $(DMSO)^+$, $(DMSO)_2^+$ and $(DMSO)_3^+$ ions, respectively, and maintaining the pickup vapor pressure at a level such that the mass peak of interest would be dominant over the next higher one. This is illustrated in Fig. S1. The mass spectrometer is a Balzers QMG-511 crossed-beam quadrupole analyzer with its electron impact ionization source set to 90 eV impact energy.

Figure S1. Representative mass spectra corresponding to deflection measurements on $(DMSO)_n$ -doped nanodroplets. The mass spectrometer was set to the masses of intact ions: (a) 78 Da for the monomer, (b) 156 Da for the dimer, (c) 234 Da for the trimer.

II. Ab initio calculations: Benchmarking

The potential energy surface was explored with the B3LYP(D2)/aug-cc-pVDZ method. The dipole moment of the isolated DMSO molecule in its equilibrium geometry calculated with this approach was 4.3 D, which is consistent with the tabulated value^{S1} of 4.0 D within the expected accuracy of DFT.^{S2} We validated this approach against the high-level CCSD(T)/aug-cc-pVTZ method. Basis set superposition error (BSSE) correction was used for all structures. The agreement is very good for all cluster structures, see Table S1. We also show the energetics of the respective minima at the DFTB/D3 level used for exploratory simulations. The DFT and CCSD(T) calculations were performed in the Gaussian 09, rev. D01 package,^{S3} the DFTB results were calculated in the DFTB+ 18.2 program.^{S4}

Table S1. Comparison of DMSO dimer binding energies at the CCSD(T), B3LYP(D2) and DFTB(D3) levels. The BSSE correction was accounted for in the CCSD(T) and B3LYP(D2) calculations.

Dimer	Binding energy [eV]		
complex CCSD(T)/aug-cc-pVTZ		B3LYP/aug-cc-pVDZ D2	DFTB
D1	0.53	0.56	0.46
D2	0.46	0.47	0.41
D3	0.40	0.39	0.36
D4	0.33	0.33	0.28
D5	0.32	0.32	0.26

III. Mapping of the (DMSO)₂ and (DMSO)₃ potential energy surfaces

The potential energy surfaces (PES) of DMSO complexes are rather rich and we mapped them in the following way. First, we performed accelerated molecular dynamics simulations with the molecular mechanics (MM) force field,^{S5} using the so-called metadynamics method.^{S6} Here, an additional potential is added along a preselected coordinate so that we can quickly overcome barriers along these coordinates. These simulations then also provide the free energy as a function of the selected coordinate [potential of mean force (PMF) or free energy surface (FES)]. We then selected different structures with distinct dipole moments from these metadynamical trajectories and performed further B3LYP optimization.

Metadynamics simulations were performed at 100 K to reveal the regions of interest in the dipole moment coordinate. This temperature is much higher than the experimental conditions, yet we opted for it to avoid ergodicity problems. Note that these simulations are only auxiliary, serving as a starting point for minimizations or MD simulations. The minimum on the PMF is found for a small yet non-zero dipole moment due to entropic reasons. The force field overestimates the dipole moment by 20% with respect to the *ab initio* value. The final PMFs for the dimer and trimer complexes are displayed in Fig. S2.

By clustering structures with similar dipoles together and performing 100 subsequent optimizations with Gaussian 09, for both the dimer and trimer structures, we were then able to map their PES landscapes.

The metadynamics parameters were as follows. The dimer simulation length was 100 ps, leap-frog stochastic integrator was utilized, the temperature was set to 100 K with a thermostat constant of $\tau = 1.0$ ps. For the trimer the simulation length was increased to 300 ps. The collective variable (CV) is the total dipole moment. An additional Gaussian potential was added every 100 steps. The Gaussian height was 0.015 kJ/mol and the CV gaussian width was 1.2 Debye.

MD simulations were performed with GROMACS 2018.4 code^{S7} coupled with PLUMED 2.5 code^{S8} for the FES simulations.

Figure S2. PMF for DMSO dimer and trimer complexes for the dipole moment coordinate at 100K.

IV. Transition between two dimers at a distance and D5

Nudged elastic band (NEB) optimization^{S9} was performed to find energy barriers between two DMSO molecules a distance apart (13.5 Å; in the minimal geometry at that separation the two DMSO molecules have aligned dipoles) and complex D5. Fig. S3 shows that the connection is barrierless.

The simulations were carried out in the TeraChem code^{S10,S11} using the B3LYP(D2)/augcc-pVDZ method with 14 molecular images between the two structures. The images were generated by constrained minimization.

Figure S3. NEB calculations connecting the long-distance configuration to the D5 minimum.

V. Transition between the D5 and D1 minima

We also performed NEB calculation connecting the D5 minimum with the global D1 minimum. The final energy curve is shown in Fig. S4.

Figure S4. NEB calculations connecting the minima D1 and D5.

VI. Two dimensional free energy surface

Additional insight into the topology of the multidimensional PES of DMSO aggregates can be brought about via modeling of free energy surfaces (FES). We evaluated the FES (i.e., the two dimensional version of the PMF in Fig. S2) as a function of two coordinates: the aggregate dipole moment and the interatomic S-S distance, see Figs. S5-S8. The graphs were once again generated using the metadynamics method and the temperature of 100 K to avoid convergence issues. It is clear that at large intermolecular distance the system prefers the high-dipole configuration, as mentioned above. At close distances one observes a number of minima separated by barriers.

The 2D metadynamics parameters were as follows. As before, for the dimer the simulation length was 100 ps, leap-frog stochastic integrator was utilized, the temperature was set to 100 K with thermostat constant τ =1.0 ps. The first collective variable, CV1, was defined as the S-S interatomic distance between the DMSO monomers. An additional Gaussian potential was added at every 1000 steps. The Gaussian height was 0.015 kJ/mol and the CV1 Gaussian width was 0.1 nm. The second collective variable was the dipole moment with the same deposition parameters as CV1 and Gaussian width of 1.2 D. Upper energetic walls for CV1 were applied at 2 nm in order to keep the molecule in the area of interest.

For the trimer the simulation length was increased tenfold to 1000 ps, with the other parameters fixed. CV1 was redefined as the sum of S-S interatomic distances due to the presence of the third DMSO molecule, the other variables remained the same. The upper energetic walls for CV1 were shifted to 6.0 nm.

Figure S5. FES for the DMSO dimer at 100 K.

Figure S6. FES heatmap for the DMSO dimer at 100 K. Contour spacing 0.01 eV.

Figure S7. FES for the DMSO trimer at 100 K.

Figure S8. FES heatmap for the DMSO trimer at 100 K. Contour spacing 0.01 eV.

VII. Force field parameters

The MM simulations were performed with parameters taken from ref S5. The parameters are summarized in Tables S2 and S3.

Atom	Charge	ε (kJ/mol)	σ (nm)
0	-0.556	0.50242	0.30291
S	0.312	1.46537	0.35636
С	-0.148	0.32657	0.36348
Н	0.090	0.10048	0.23876

Table S2. Atomic type parameters for DMSO.

Bond	<i>b</i> ₀ (nn	n) $f_{\rm c}$ (kJ n	nol ⁻¹ nm ⁻²)
H-C	0.111	134	1724.8
C-S	0.180) 100)416.0
S-O	0.153	3 225	5936.0
Angle	s θ_0 (nn	n) fc (kJ m	$nol^{-1} rad^{-2}$
H-C-H	H 108.40	00 148	3.5320
H-C-S	111.30	0 192	2.8824
C-S-C	106.75	50 330).5360
C-S-C	95.00	00 142	2.2560
Dihedrals	φ ₀ (deg)	fc (kJ mol ⁻¹)	X
H-C-S-O	0.0	0.8368	3
H-C-S-C	0.0	0.8368	3

 Table S3.
 Intermolecular parameters for DMSO.

VIII. Cartesian coordinates of all structures

Geometries of the optimal structures presented in Figs. 2 and 4 of the main text are listed below, with all coordinates in Angstroms.

Monomer 10

С	1.390750	0.279323	-0.278296
S	0.072728	-0.679506	0.585004
С	-1.342363	0.171624	-0.236526
0	0.075720	-0.189227	2.044957
Н	1.346127	0.069130	-1.356470
Н	1.227420	1.344812	-0.066434
Н	2.347951	-0.053762	0.141464
Н	-1.314193	-0.035613	-1.315827
Н	-2.257159	-0.235280	0.211752
Н	-1.256995	1.246897	-0.028367

D1

С	1.391830	0.296071	-0.267191
S	0.073035	-0.689518	0.555023
С	-1.343411	0.188626	-0.225497
0	0.078854	-0.256270	2.047129
Н	1.379923	0.056354	-1.339642
Н	1.179380	1.359143	-0.087564
Н	2.341205	-0.018939	0.183566
Н	-1.345350	-0.050790	-1.298081
Н	-2.251051	-0.199163	0.253587
Н	-1.209576	1.265306	-0.051326
S	-0.073081	3.587139	1.938615
0	-0.078682	3.153903	0.446506
С	-1.391839	2.601376	2.760682
С	1.343385	2.709142	2.719264
Н	-1.380080	2.841096	3.833135
Н	-2.341208	2.916257	2.309824
Н	-1.179218	1.538334	2.581077
Н	1.345162	2.948483	3.791865
Н	1.209699	1.632459	2.545001
Н	2.251033	3.097074	2.240313

D2 20

0	8.826895	8.110270	10.400227	
S	9.972464	7.608129	9.483674	
С	11.539269	7.974326	10.379345	
Н	12.382316	7.730081	9.717863	
Н	11.525836	9.039717	10.646509	
Н	11.551024	7.328890	11.266521	
С	10.186293	8.892506	8.183524	
Н	11.035534	8.602394	7.548535	
Н	9.256912	8.900193	7.600878	
Н	10.362717	9.852789	8.687985	
0	10.697510	11.161246	10.536141	
S	9.253455	11.346438	11.076378	
С	9.145789	10.330797	12.600760	
Н	8.213528	10.584098	13.124409	
Н	9.133390	9.289859	12.256910	
Н	10.027135	10.559985	13.215271	
С	9.274676	12.983721	11.916622	
Н	8.313117	13.137349	12.426572	
Н	10.112562	12.992963	12.626663	
Н	9.422581	13.740250	11.136213	

D3

С	-6.599507	-9.935427	-8.808258	
S	-6.050826	-8.220930	-8.418528	
С	-7.587463	-7.381111	-8.969174	
0	-4.975044	-7.895873	-9.486073	
Н	-7.454125	-10.195223	-8.167596	
Н	-6.867985	-9.974321	-9.872589	
Н	-5.748550	-10.596439	-8.602335	
Н	-8.424339	-7.741197	-8.354184	
Н	-7.407231	-6.311806	-8.806702	
Н	-7.734957	-7.620273	-10.031201	
S	-4.736135	-4.653480	-8.965041	
0	-5.810347	-4.978975	-7.896071	
С	-4.188088	-2.938502	-8.576590	
С	-3.198394	-5.492320	-8.416137	
Н	-3.333958	-2.678643	-9.217880	
Н	-5.039455	-2.277959	-8.782326	
Н	-3.918996	-2.898989	-7.512438	
Н	-2.362832	-5.133640	-9.033730	
Н	-3.048402	-5.251363	-7.354870	
Н	-3.379470	-6.561814	-8.576431	

D4 20

0	10.770543	12.406453	7.172925
S	10.996603	12.217603	8.692035
С	12.663048	11.452412	8.865018
Н	12.827871	11.198932	9.921240
Н	12.692858	10.559951	8.226519
Н	13.389878	12.202747	8.531247
С	10.042817	10.713973	9.163143
Н	10.255542	10.475201	10.214216
Н	8.982319	10.960304	9.031380
Н	10.346341	9.897937	8.494552
0	11.783311	8.009573	5.181466
S	11.481115	9.357691	5.867285
С	12.445813	10.642888	4.970928
Н	12.145669	11.622494	5.364081
Н	13.505277	10.435700	5.167309
Н	12.228607	10.534564	3.900118
С	9.828399	9.903572	5.270228
Н	9.653478	10.918986	5.647899
Н	9.840437	9.858877	4.173228
Н	9.097072	9.191144	5.672183

D5

С	0.832083	0.053205	0.687160
S	-0.018838	0.529481	-0.873482
S	1.568387	-2.573673	-1.989863
С	0.721902	-2.067199	-3.541948
С	-1.624708	-0.272902	-0.470355
0	-0.252453	2.053432	-0.806970
0	0.449839	-2.770887	-0.938584
С	2.024752	-4.266109	-2.547539
Н	0.867295	-1.043176	0.726962
Н	1.838413	0.487869	0.644560
Н	0.262499	0.486055	1.520395
Н	-1.455444	-1.355871	-0.418903
Н	-1.978107	0.143628	0.482340
Н	-2.317341	-0.012725	-1.280529
Н	2.733390	-4.189503	-3.384114
Н	2.491453	-4.765940	-1.690035
Н	1.103863	-4.786018	-2.843846
Н	1.450590	-2.071775	-4.364292
Н	-0.098565	-2.774219	-3.724319
Н	0.340792	-1.054444	-3.366810

T1 30

0	18.325573	19.811653	21.617481
S	19.721884	20.312996	21.169378
С	20.228323	21.608815	22.376809
Н	21.215482	21.985848	22.075579
Н	19.485068	22.415686	22.369997
Н	20.289383	21.113897	23.353709
С	19.440363	21.463757	19.758658
Н	20.418372	21.838813	19.426676
Н	18.968548	20.870817	18.965678
Н	18.799604	22.289633	20.091628
0	18.271096	24.146530	21.392567
S	17.718310	25.601134	21.478337
С	16.938575	25.747636	23.136233
Н	16.505635	26.754394	23.216988
Н	16.166283	24.969074	23.217754
Н	17.742714	25.618895	23.871189
С	16.151632	25.602873	20.517245
Н	15.714781	26.608754	20.587075
Н	16.422965	25.376776	19.478677
Н	15.486136	24.843390	20.952583
0	14.642326	23.527870	22.517495
S	15.116812	22.043647	22.457649
С	16.675088	21.971241	23.424806
Н	17.142014	20.993610	23.248081
Н	17.321498	22.778503	23.058847
Н	16.399735	22.113636	24.476868
С	15.887654	21.824953	20.806281
Н	16.405169	20.856910	20.796220
Н	15.074819	21.866766	20.071118
Н	16.603161	22.645493	20.671394

Т2

С	19.978371	22.960022	19.710536
S	19.735892	23.242403	21.510328
С	20.388685	21.613064	22.058900
0	18.198954	23.189838	21.745112
С	15.358815	23.917374	20.096399
S	14.121084	23.111607	21.194225
С	15.047600	23.377434	22.762579
0	14.190395	21.590951	20.897064
S	17.054341	20.556144	20.208772
С	15.942352	19.217124	19.628149

0	18.501515	20.064915	19.893824
С	16.827935	20.251673	22.004302
Н	21.059208	22.936455	19.512556
Н	19.496985	22.004570	19.454354
Н	19.514939	23.811524	19.197357
Н	21.467010	21.591478	21.848409
Н	20.210845	21.552465	23.139753
Н	19.850741	20.831749	21.503192
Н	15.760191	20.345461	22.229074
Н	17.216281	19.244890	22.206490
Н	17.413863	21.021960	22.516917
Н	14.919373	19.492859	19.911972
Н	16.052332	19.168894	18.537795
Н	16.267612	18.274891	20.088960
Н	15.332881	24.997756	20.296283
Н	16.349231	23.496971	20.310933
Н	15.040118	23.707847	19.068112
Н	15.045690	24.454363	22.980238
Н	14.504377	22.828117	23.541197
Н	16.073387	23.010200	22.639216

С	19.318080	22.762136	22.418743
S	18.401131	21.379365	21.618767
С	18.852818	21.822207	19.888771
0	16.894078	21.701134	21.778298
0	19.025390	25.162225	20.116170
S	18.978878	26.478380	19.285963
С	18.218864	27.737277	20.375610
С	20.695828	27.130948	19.340978
С	16.290257	24.915699	22.126303
S	15.070039	25.136098	20.770491
С	15.850747	23.953991	19.603056
0	15.323351	26.555016	20.184537
Н	20.393691	22.575593	22.293887
Н	19.028486	23.706104	21.941314
Н	19.045684	22.740531	23.480909
Н	19.921248	21.605360	19.751253
Н	18.245550	21.181412	19.238001
Н	18.646287	22.887366	19.725303
Н	20.713003	28.127033	18.877545
Н	21.008893	27.173273	20.392785
Н	21.324967	26.432136	18.776249
Н	18.326517	28.718024	19.891996
Н	17.157993	27.455148	20.467183

Н	18.745592	27.706182	21.339379
Н	16.277900	23.860237	22.428986
Н	17.274927	25.192098	21.728825
Н	15.980785	25.581780	22.940796
Н	15.862931	22.963479	20.077728
Н	15.245255	23.967205	18.688986
Н	16.872837	24.307564	19.416185

С	5.071517	-0.034670	-3.655985
S	4.287297	-0.194668	-1.997307
С	5.830416	-0.559251	-1.075361
0	3.893217	1.257561	-1.611793
S	-0.020529	2.540318	0.295084
С	1.283159	3.066414	-0.885371
0	0.572434	2.732177	1.715202
С	3.644181	1.756288	1.598188
S	2.617946	0.269497	1.276626
С	1.964214	0.086045	2.982365
0	3.615924	-0.905124	1.078908
Н	1.323627	0.953582	3.183548
Н	1.388114	-0.847471	2.998202
Н	2.818493	0.022048	3.669544
Н	2.968760	2.565559	1.900207
Н	4.362207	1.495270	2.386815
Н	4.148555	1.979398	0.651252
Н	0.822989	3.182558	-1.876460
Н	1.688760	4.020594	-0.522132
Н	2.057413	2.289562	-0.920766
Н	5.497260	-1.005416	-3.946611
Н	4.282043	0.264332	-4.356496
Н	5.846821	0.740863	-3.594728
Н	6.247662	-1.502562	-1.454190
Н	6.520679	0.279922	-1.237121
Н	5.523931	-0.655551	-0.027295
С	-1.126902	3.988674	0.041019
Н	-1.509237	3.972861	-0.989222
Н	-1.948976	3.889460	0.760368
Н	-0.546405	4.899313	0.241051

T5 30

0	16.634857	24.592189	18.933949
S	17.819686	24.188608	19.842340
С	18.546611	25.748060	20.487096
н	19.438384	25.480875	21.069767
Н	18.776646	26.394312	19.630220
Н	17.780785	26.213377	21.119207
С	19.237765	23.746631	18.763679
Н	20.096423	23.565749	19.425082
н	18.955755	22.836787	18.219781
Н	19.417204	24.574596	18.065138
0	20.209226	23.485765	22.163446
S	18.877554	23.104769	22.864853
С	19.254372	22.812446	24.636229
Н	18.324234	22.468296	25.107880
Н	20.058270	22.067975	24.708308
Н	19.577739	23.772502	25.056335
С	18.574534	21.347602	22.430705
Н	17.751416	20.981712	23.056223
Н	18.299881	21.331231	21.369829
Н	19.512448	20.803987	22.601658
0	15.856035	22.403783	23.805490
S	15.408064	22.687282	22.347855
С	15.384240	24.514743	22.152187
Н	15.163099	24.748814	21.101020
Н	14.647435	24.936357	22.847504
Н	16.395863	24.844707	22.412702
С	13.585634	22.453003	22.322482
Н	13.200021	22.813677	21.358789
Н	13.395364	21.379488	22.440968
Н	13.163459	23.017678	23.164279

т6 30

0	18.248791	19.538962	25.445555
S	18.177691	19.442715	26.988687
С	18.433034	21.156221	27.613792
Н	18.496857	21.127477	28.710183
Н	19.356533	21.546423	27.166533
Н	17.561677	21.740741	27.294830
С	19.813685	18.792657	27.529990
Н	19.853766	18.804080	28.627823
Н	19.884199	17.765020	27.153619
Н	20.593531	19.428978	27.091708

0	22.122928	22.013981	19.259183
S	22.029013	21.907157	20.795300
С	22.263129	23.603652	21.467768
Н	22.337954	23.520943	22.560161
Н	23.173825	24.017982	21.015392
Н	21.385740	24.187672	21.162752
С	23.639059	21.242274	21.387621
Н	23.636418	21.292751	22.484521
Н	23.704654	20.207811	21.027740
Н	24.435317	21.852934	20.941810
0	22.288179	21.938705	24.307074
S	21.002813	21.173364	24.716842
С	20.992990	19.611911	23.748124
Н	20.049272	19.097423	23.964572
Н	21.091252	19.874277	22.687275
Н	21.857084	19.027672	24.087681
С	19.609864	21.978664	23.829299
Н	18.704772	21.397957	24.043202
Н	19.535878	22.999435	24.224070
Н	19.855097	21.990158	22.759892

С	0.472180	-0.265895	0.733682
S	-0.136458	0.321670	-0.898489
0	-0.384447	1.846400	-0.754727
С	-1.785515	-0.482541	-0.798695
0	0.359320	-2.893610	-1.176365
S	1.641205	-2.693731	-2.021010
С	2.115524	-4.372107	-2.603230
С	1.077057	-2.055772	-3.650613
Н	0.551026	-1.358283	0.675742
Н	1.451728	0.200982	0.892637
Н	-0.247228	0.058360	1.495983
Н	-1.625451	-1.566818	-0.828784
Н	-2.261186	-0.155086	0.134675
Н	-2.355211	-0.137931	-1.670337
Н	2.951015	-4.283369	-3.311612
Н	2.420451	-4.939134	-1.715311
Н	1.234961	-4.831777	-3.071533
Н	1.927235	-2.048859	-4.346467
Н	0.268384	-2.708093	-4.006330
Н	0.713231	-1.036965	-3.472756
S	-2.320128	1.993864	2.169713
0	-3.154515	2.294445	3.432453
С	-3.077491	2.942538	0.787412

С	-0.788980	3.007148	2.285051
Н	-2.419933	2.841894	-0.086210
Н	-4.064898	2.499581	0.606587
Н	-3.180753	3.985061	1.116591
Н	-0.254575	2.912504	1.330540
Н	-1.090007	4.041603	2.496975
Н	-0.204794	2.601451	3.120616

0	22.134918	25.903523	23.940447
S	23.041269	24.808338	24.561304
С	22.070844	24.071469	25.935851
Н	22.726180	23.402398	26.509576
Н	21.686789	24.890733	26.558087
Н	21.251172	23.507444	25.474200
С	24.246540	25.712157	25.614598
Н	24.837479	24.984221	26.187314
Н	24.891884	26.286350	24.938904
Н	23.682050	26.382530	26.276309
0	18.026224	22.657810	23.136880
S	19.327282	23.413547	23.474273
С	18.847931	25.002640	24.270183
Н	19.769957	25.568621	24.458552
Н	18.190563	25.554032	23.588146
Н	18.338681	24.736761	25.204821
С	19.960394	24.149959	21.912549
Н	20.865655	24.718669	22.164650
Н	20.186067	23.308764	21.246021
Н	19.190316	24.810736	21.496604
0	18.606089	27.152941	21.810753
S	19.594310	28.340832	21.800217
С	21.206535	27.678398	21.199666
Н	21.938315	28.498325	21.206754
Н	21.524346	26.861633	21.859709
Н	21.033168	27.327994	20.175000
С	20.127602	28.590982	23.547016
Н	20.862715	29.407639	23.569519
Н	19.226795	28.869318	24.107320
Н	20.565929	27.657234	23.920780

<u>References</u>

- S1 CRC Handbook of Chemistry and Physics, 99th edition, ed. J. R. Rumble, CRC Press, Boca Raton, 2018
- S2 D. Hait, M. Head-Gordon, J. Chem. Theory Comput. 2018, 14, 1969.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 (Rev. D.01), Gaussian, Inc., Wallingford, CT, 2009.
- S4 B. Aradi, B. Hourahine and Th. Frauenheim, J. Phys. Chem. A. 2007, 111, 5678.
- S5 M. L.Strader and S. E. Feller, J. Phys. Chem. A. 2002, 106, 1074.
- S6 A. Barducci, M. Bonomi and M. Parrinello, WIREs Comput. Mol. Sci. 2011, 1, 826.
- S7 M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess and E. Lindahl, *SoftwareX* 2015, 1-2, 19.
- S8 G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni and G. Bussi, *Comput. Phys. Commun.* 2014, **185**, 604.
- S9 H. Jonson, G. Mills and K. W. Jacobsen, in *Classical and Quantum Dynamics in Condensed Phase Simulations*, ed. B. J. Berne, G. Ciccotti and D. F. Coker, World Scientific, Singapore, 1998, pp. 385-404.
- S10 TeraChem v 1.9. http://www.petachem.com.
- S11 I. S. Ufimtsev and T. J. Martinez, J. Chem. Theory Comput. 2009, 5, 2619.