Electronic Supporting Information

Lanthanide and Actinide doped B₁₂H₁₂²⁻ and Al₁₂H₁₂²⁻ Clusters: New Magnetic Superatoms with f-block Elements Meenakshi Joshi^{#,†} and Tapan K. Ghanty^{#,†,*}

[#]Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400085, India [†]Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai– 400094, India

AUTHOR INFORMATION

Corresponding Author

*Email: <u>tapang@barc.gov.in;</u> Fax: 0091–22–25505151

List of Tables

Table S1. Relative Energy (RE, in eV) of Singlet, Triplet, Quintet, and Septet Spin of Endohedral clusters with respect to corresponding Septet Spin Exohedral Cluster using Different DFT methods with and without symmetry

Table S2. Relative Energy (RE, in eV) of Singlet, Triplet and Quintet Spin of Exohedral clusters with respect to corresponding Septet Spin Exohedral Cluster using Different DFT methods with and without symmetry

Table S3. Calculated Values of the Optimized Bond Lengths (R, in Å) of bare $Al_{12}H_{12}^{2^-}$ and Exohedral (An@Al₁₂H₁₂^{2^-} and Ln@Al₁₂H₁₂^{2^-}) Clusters in Septet Spin State using B3LYP/DEF Method

Table S4. Calculated Values of the Optimized bond lengths (R, in Å) of bare $B_{12}H_{12}^{2^-}$ Cluster and Exohedral (An@ $B_{12}H_{12}^{2^-}$ and Ln@ $B_{12}H_{12}^{2^-}$) Clusters in Septet Spin State using B3LYP/DEF Method

Table S5. Comparison of Calculated Values of Optimized Bond Length ($R_{(M-AI)}$, in Å), Binding Energy (BE, in eV), HOMO–LUMO Energy Gap (ΔE_{Gap} , in eV), NPA Charge on Doped ion (q_M , in e) and Total Spin Population (N_S) of Exohedral Pu@Al₁₂H₁₂ and Sm@Al₁₂H₁₂ Clusters with and without Symmetry in Septet Spin State using Different DFT Methods. Atomic f-Population (nf) of An/Ln is Provided in Parenthesis

Table S6. Comparison of Calculated Values of Optimized Bond Length ($R_{(M-B)}$, in Å), Binding Energy (BE, in eV), HOMO–LUMO Energy Gap (ΔE_{Gap} , in eV), NPA Charge on Doped ion (q_M , in e) and Total Spin Population (N_S) of Exohedral Pu@B₁₂H₁₂ and Sm@B₁₂H₁₂ Clusters with and without Symmetry in Septet Spin State using Different DFT Methods. Atomic f-Population (nf) of An/Ln is Provided in Parenthesis

Table S7. Comparison of Calculated Values of the Optimized Bond Lengths ($R_{(M-Al)}$, in Å), Binding Energy (BE, in eV), HOMO-LUMO Energy Gap (ΔE_{Gap} , eV) and Total Spin Population (N_S) of Endohedral Pu@Al₁₂H₁₂ and Sm@Al₁₂H₁₂ Clusters with and without Symmetry in Septet Spin State using Different DFT Methods. Atomic f-Population (nf) of An/Ln is Provided in Parenthesis

Table S8. Comparison of Binding Energy (BE, in eV), HOMO–LUMO Energy Gap (ΔE_{Gap} , in eV) and $\langle S^2 \rangle$ value of Exohedral An@Al₁₂H₁₂²⁻ and Ln@Al₁₂H₁₂²⁻ Clusters in Septet Spin State using B3LYP/DEF, PBE/DEF, M06-2X/DEF and TPSSH/DEF Methods

Table S9. Comparison of Binding Energy (BE, in eV), HOMO–LUMO Energy Gap (ΔE_{Gap} , in eV) and $\langle S^2 \rangle$ value of Exohedral An@B₁₂H₁₂²⁻ and Ln@B₁₂H₁₂²⁻ Clusters in Septet Spin State using B3LYP/DEF, PBE/DEF, M06-2X/DEF and TPSSH/DEF Methods

Table S10. Analysis of the Orbitals Compositions of Septet Spin Endohedral $Pu@Al_{12}H_{12}$ Cluster in C_{3v} Symmetry Using PBE/TZ2P Method

Table S11. Analysis of the Orbitals Compositions of Septet Spin Endohedral Sm@Al_ $12H_{12}$ Cluster in C3v Symmetry Using PBE/TZ2P Method

List of Figures

Figure S1. Optimized exohedral and endohedral cluster using different initial geometry without any symmetry constrain at B3LYP/DEF level of theory

Figure S2. Molecular orbital pictures of $Al_{12}H_{12}^{2-}$ cluster in I_h symmetry using B3LYP/DEF Method

Figure S3. Molecular orbital pictures of endohedral $Pu@Al_{12}H_{12}$ cluster in C_{3v} symmetry using B3LYP/DEF Method. (Blue text represents MOs with metal-cage overlap, red text represent pure cage MOs, green text represent MOs with negligible mixing of cage with the metal)

Figure S4. Energy barrier plots of exohedral and endohedral a) $Pu@Al_{12}H_{12}$ and b) $Sm@Al_{12}H_{12}$ clusters, respectively, obtained using B3LYP/DEF method.

Figure S5. Density of state (DOS) plots of (a) $Pu@Al_{12}H_{12}$ and (b) $Sm@Al_{12}H_{12}$, septet spin exohedral clusters at B3LYP/DEF, PBE/DEF, M06-2X/DEF and TPSSH/DEF level of theory

Figure S6. Density of state (DOS) of spin up (alpha) and spin down (beta) plots of (a) An@ $Al_{12}H_{12}^{2-}$ (An = Pu²⁺, Am³⁺) and (b) Ln@ $Al_{12}H_{12}^{2-}$ (Ln = Sm²⁺, Eu³⁺) septet spin exohedral clusters at B3LYP/DEF level of theory. (Vertical Arrow represents highest energy SOMO)

FigureS7. Molecular orbital pictures of valence singly occupied molecular orbitals (SOMOs) of septet spin exohedral $PuB_{12}H_{12}$ at B3LYP/DEF level of theory.

Table S1. Relative Energy (RE, in eV) of Singlet, Triplet, Quintet, and Septet Spin of Endohedral clusters with respect to corresponding Septet Spin Exohedral Cluster using Different DFT methods with and without symmetry

Endohedral	RE					
Systems	UNP0	UNP2	UNP4	UNP6		
C _{3v} -Symmetry						
$Pu@Al_{12}H_{12}$						
PBE	0.82	1.27	*	1.08		
B3LYP	2.57	2.87	2.64	2.27		
M06-2X	4.25	3.68	2.80	1.95		
TPSSH	1.14	1.60	1.50	1.13		
Sm@Al ₁₂ H ₁₂						
PBE	6.09	*	*	2.58		
B3LYP	7.52	6.56	4.96	3.72		
M06-2X	10.46	8.79	5.56	3.82		
TPSSH	6.38	5.35	*	2.72		
	C_1 -S	ymmetry				
$Pu@Al_{12}H_{12}$						
B3LYP	2.58	2.89	2.62	2.28		
M06-2X	4.29	3.71	2.87	1.98		
Sm@Al ₁₂ H ₁₂						
B3LYP	7.55	6.57	4.99	3.74		
M06-2X	10.42	8.04	5.60	3.83		

*Geometry is not converged properly

Table S2. Relative Energy (RE, in eV) of Singlet, Triplet and Quintet Spin of Exohedral clusters with respect to corresponding Septet Spin Exohedral Cluster using Different DFT methods with and without symmetry

Exohedral	RE					
Systems	UNPO	UNP2	UNP4	UNP6		
	C _{3v} _Sy	mmetry				
Pu@Al ₁₂ H ₁₂						
PBE	3.71	*	*	0.00		
B3LYP	3.82	2.38	1.40	0.00		
M06-2X	5.59	3.41	1.56	0.00		
TPSSH	3.61	2.08	*	0.00		
Sm@Al ₁₂ H ₁₂						
PBE	5.69	3.01	*	0.00		
B3LYP	5.38	4.62	2.53	0.00		
M06-2X	7.62	7.69	1.86	0.00		
TPSSH	5.42	3.02	*	0.00		
Pu@B ₁₂ H ₁₂						
PBE	4.08	*	*	0.00		
B3LYP	6.37	3.07	2.67	0.00		
M06-2X	5.74	4.50	3.09	0.00		
TPSSH	3.78	3.26	*	0.00		
Sm@B ₁₂ H ₁₂						
PBE	5.77	*	*	0.00		
B3LYP	9.88	4.56	2.53	0.00		
M06-2X	7.61	5.52	3.56	0.00		
TPSSH	5.42	4.59	*	0.00		
	C ₁ -Sy	mmetry				
$Sm@Al_{12}H_{12}$						
B3LYP	3.83	2.39	1.44	0.00		
M06-2x	5.78	3.43	1.57	0.00		
$Sm@Al_{12}H_{12}$						
B3LYP	5.39	3.33	2.22	0.00		
M06-2x	7.57	5.44	3.52	0.00		
Pu@B ₁₂ H ₁₂						
B3LYP	4.08	2.36	1.17	0.00		
M06-2x	5.81	3.00	1.52	0.00		
Sm@B ₁₂ H ₁₂						
B3LYP	5.39	4.01	2.16	0.00		
M06-2x	7.55	4.23	2.93	0.00		

*Geometry is not converged properly

Table S3. Calculated Values of the Optimized Bond Lengths (R, in Å) of bare Al ₁₂ H ₁₂ ²⁻
and Exohedral (An@Al ₁₂ H ₁₂ ²⁻ and Ln@Al ₁₂ H ₁₂ ²⁻) Clusters in Septet Spin State using
B3LYP/DEF Method

Clusters	At Metal	Doped Trian	$a^{\mathbf{R}}$	
	R _(Al-Al)	R _(M-H)	R _(Al-H)	- (cage-uia)
$Al_{12}H_{12}^{2-}$	2.704		1.605	5.144
Np@Al ₁₂ H ₁₂ ⁻	2.699	2.483	1.642	5.062 (5.216)
$Pu@Al_{12}H_{12}$	2.732	2.320	1.667	5.040 (5.262)
$Am@Al_{12}H_{12}^{+}$	2.691	2.353	1.655	5.099 (5.271)
$\mathbf{Pm}(\mathbf{A}\mathbf{I}_{12}\mathbf{H}_{12}^{-}$	2.700	2.560	1.637	5.052 (5.220)
Sm@Al ₁₂ H ₁₂	2.730	2.361	1.663	5.040 (5.258)
$\mathbf{Eu} \mathbf{@} \mathbf{Al_{12}H_{12}}^{+}$	2.688	2.380	1.651	5.099 (5.266)

Table S4. Calculated Values of the Optimized bond lengths (R, in Å) of bare B₁₂H₁₂²⁻ Cluster and Exohedral (An@B₁₂H₁₂²⁻ and Ln@B₁₂H₁₂²⁻) Clusters in Septet Spin State using B3LYP/DEF Method

Clusters	At Metal Doped Triangular Face			^a R(approvide)
01400010	R _(B-B)	R _(M-H)	R _(B-H)	- (cage-uia)
$B_{12}H_{12}^{2-}$	1.783		1.201	3.392
Np@B ₁₂ H ₁₂	1.784	2.422	1.218	3.365 (3.408)
$\mathbf{Pu} @ \mathbf{B_{12}} \mathbf{H_{12}} \\$	1.808	2.290	1.232	3.364 (3.420)
$Am@B_{12}H_{12}^+$	1.789	2.348	1.221	3.426 (3.454)
$\mathbf{Pm} \mathbf{@} \mathbf{B_{12} H_{12}}^{-}$	1.783	2.437	1.216	3.365 (3.407)
$\mathbf{Sm} @ \mathbf{B}_{12} \mathbf{H}_{12}$	1.803	2.305	1.229	3.364 (3.417)
$Eu@B_{12}H_{12}^+$	1.787	2.352	1.218	3.419 (3.454)

Table S5. Comparison of Calculated Values of Optimized Bond Length ($R_{(M-Al)}$, in Å), Binding Energy (BE, in eV), HOMO–LUMO Energy Gap (ΔE_{Gap} , in eV), NPA Charge on Doped ion (q_M , in e) and Total Spin Population (N_S) of Exohedral Pu@Al₁₂H₁₂ and Sm@Al₁₂H₁₂ Clusters with and without Symmetry in Septet Spin State using Different DFT Methods. Atomic f-Population (nf) of An/Ln is Provided in Parenthesis.

Cluster	Sym	R _(M-Al)	BE	ΔE_{Gap}	q _M	N _S (nf)
$Al_{12}H_{12}^{2-}$				•		\$ <i>C</i>
PBE	I _h			2.511		
B3LYP	I _h			3.698		
M06-2X	I _h			4.968		
TPSSH	I _h			2.969		
$Pu@Al_{12}H_{12}$						
PBE	C _{3v}	3.007	-17.57	0.128	1.048	6.163 (5.805)
B3LYP	C _{3v}	3.070	-16.79	2.210	1.202	6.170 (5.869)
M06-2X	C _{3v}	3.077	-16.91	3.723	1.329	6.137 (5.919)
TPSSH	C _{3v}	2.995	-17.17	1.420	1.138	6.212 (5.869)
$Sm@Al_{12}H_{12}$						
PBE	C _{3v}	3.063	-16.71	0.353	1.260	6.151 (5.950)
B3LYP	C _{3v}	3.106	-16.34	2.497	1.367	6.138 (5.986)
M06-2X	C _{3v}	3.118	-16.46	3.888	1.472	6.118 (5.984)
TPSSH	C _{3v}	3.069	-16.59	2.184	1.346	6.150 (5.963)
$Al_{12}H_{12}^{2-}$						
		Without S	Symmetry (Constrain		
B3LYP	C ₁			3.696		
M06-2X	C1			4.965		•••
$Pu@Al_{12}H_{12}$						
B3LYP	C ₁	3.052	-16.80	2.211	1.190	6.190 (5.879)
M06-2X	C ₁	3.068	-16.95	3.811	1.333	6.152 (5.960)
$Sm@Al_{12}H_{12}$						
B3LYP	C ₁	3.100	-16.37	2.508	1.363	6.142 (5.983)
M06-2X	C_1	3.113	-16.46	3.904	1.468	6.122 (5.990)

Table S6. Comparison of Calculated Values of Optimized Bond Length ($R_{(M-B)}$, in Å), Binding Energy (BE, in eV), HOMO–LUMO Energy Gap (ΔE_{Gap} , in eV), NPA Charge on Doped ion (q_M , in e) and Total Spin Population (N_S) of Exohedral Pu@B₁₂H₁₂ and Sm@B₁₂H₁₂ Clusters with and without Symmetry in Septet Spin State using Different DFT Methods. Atomic f-Population (nf) of An/Ln is Provided in Parenthesis.

Clusters	Sym	R _(M-B)	BE	ΔE _{Gap}	q _M	N _S (nf)
$B_{12}H_{12}^{2-}$						
PBE	I _h			5.437		
B3LYP	I _h			6.571		
M06-2X	I _h			8.240		
TPSSH	I _h			6.157		
Pu@B ₁₂ H ₁₂						
PBE	C _{3v}	2.584	-18.54	0.147	1.493	6.131 (5.782)
B3LYP	C _{3v}	2.636	-17.81	2.081	1.602	6.112 (5.859)
M06-2X	C _{3v}	2.639	-18.01	4.841	1.685	6.088 (5.927)
TPSSH	C _{3v}	2.598	-18.23	1.315	1.580	6.131 (5.851)
$Sm@B_{12}H_{12}$						
PBE	C _{3v}	2.610	-17.85	0.362	1.575	6.114 (5.950)
B3LYP	C _{3v}	2.646	-17.49	3.282	1.647	6.097 (5.970)
M06-2X	C_{3v}	2.657	-17.55	5.136	1.719	6.083 (5.979)
TPSSH	C _{3v}	2.613	-17.82	2.312	1.631	6.111 (5.957)
		Without S	ymmetry Co	nstrain		
$B_{12}H_{12}^{2-}$						
B3LYP	C1			6.576		
M06-2X	C1			8.243		
$Pu@B_{12}H_{12}$						
B3LYP	C_1	2.637	-17.80	2.027	1.606	6.108 (5.880)
M06-2X	C1	2.638	-18.01	4.863	1.686	6.085 (5.927)
$Sm@B_{12}H_{12}$						
B3LYP	C1	2.650	-17.47	3.295	1.648	6.094 (5.966)
M06-2X	C1	2.654	-17.54	5.153	1.719	6.081 (5.980)

Table S7. Comparison of Calculated Values of the Optimized Bond Lengths ($R_{(M-Al)}$, in Å), Binding Energy (BE, in eV), HOMO-LUMO Energy Gap (ΔE_{Gap} , eV) and Total Spin Population (N_S) of Endohedral Pu@Al₁₂H₁₂ and Sm@Al₁₂H₁₂ Clusters with and without Symmetry in Septet Spin State using Different DFT Methods. Atomic f-Population (nf) of An/Ln is Provided in Parenthesis.

Cluster	Sym	R _(M-Al)	BE	ΔE_{Gap}	N _S (nf)
$Al_{12}H_{12}^{2-}$					
PBE	I _h			2.511	
B3LYP	I _h			3.698	
M06-2X	I _h			4.968	
TPSSH	I _h			2.969	
$Pu@Al_{12}H_{12}$					
PBE	C _{3v}	2.774	-16.49	0.077	5.717 (5.391)
B3LYP	C _{3v}	2.782	-14.52	2.045	5.718 (5.466)
M06-2X	C _{3v}	2.754	-14.97	4.013	5.861 (5.601)
TPSSH	C _{3v}	2.762	-16.04	1.417	5.743 (5.453)
$Sm@Al_{12}H_{12}$					
PBE	C _{3v}	2.772	-14.13	0.345	6.015 (5.745)
B3LYP	C _{3v}	2.781	-12.62	2.907	6.033 (5.794)
M06-2X	C _{3v}	2.759	-12.64	4.793	6.149 (5.902)
TPSSH	C _{3v}	2.760	-13.88	2.268	6.055 (5.770)
	W	ithout Sym	metry Constr	ain	
$Al_{12}H_{12}^{2-}$					
B3LYP	C ₁			3.696	
M06-2X	C ₁			4.965	
$Pu@Al_{12}H_{12}$					
B3LYP	C ₁	2.781	-14.51	2.051	5.717 (5.466)
M06-2X	C ₁	2.749	-14.97	4.007	5.859 (5.600)
$Sm@Al_{12}H_{12}$					
B3LYP	C ₁	2.781	-12.63	2.905	6.032 (5.793)
M06-2X	C ₁	2.758	-12.63	4.789	6.149 (5.902)

Table S8. Comparison of Binding Energy (BE, in eV), HOMO–LUMO Energy Gap $(\Delta E_{Gap}, \text{ in eV})$ and $\langle S^2 \rangle$ value of Exohedral An@Al₁₂H₁₂²⁻ and Ln@Al₁₂H₁₂²⁻ Clusters in Septet Spin State using B3LYP/DEF, PBE/DEF, M06-2X/DEF and TPSSH/DEF Methods

Cluster	PBE	B3LYP	M06-2X	TPSSH
$Np@Al_{12}H_{12}$				
< <u>\$</u> ² >	12.024	12.011	12.008	12.021
BE	-7.88	-7.26	-7.70	-7.83
ΔE_{Gap}	0.028	1.530	0.503	0.730
$Pu@Al_{12}H_{12}$				
<s<sup>2></s<sup>	12.027	12.017	12.015	12.032
BE	-17.40	-16.79	-16.91	-17.17
ΔE_{Gap}	0.128	2.210	3.723	1.420
$Am@Al_{12}H_{12}^{+}$				
<s<sup>2></s<sup>	12.792	13.027	13.026	13.033
BE	-34.50	-33.58	-33.66	-33.82
ΔE_{Gap}	0.095	1.146	2.487	0.563
$\mathbf{Pm}(\mathbf{a})\mathbf{Al}_{12}\mathbf{H}_{12}^{-}$				
<s<sup>2></s<sup>	12.010	12.006	12.009	12.009
BE	-7.52	-7.04	-7.73	-7.50
ΔE_{Gap}	0.301	1.442	0.623	0.808
$Sm@Al_{12}H_{12}$				
<s<sup>2></s<sup>	12.015	12.011	12.014	12.014
BE	-16.71	-16.34	-16.46	-16.59
ΔE_{Gap}	0.353	2.497	3.888	2.184
$Eu@Al_{12}H_{12}^+$				
<s<sup>2></s<sup>	13.017	13.023	13.029	13.028
BE	-36.27	-35.43	-35.67	-35.75
ΔE_{Gap}	0.096	1.185	2.495	0.784

Table S9. Comparison of Binding Energy (BE, in eV), HOMO–LUMO Energy Gap $(\Delta E_{Gap}, \text{ in eV})$ and $\langle S^2 \rangle$ value of Exohedral An@B₁₂H₁₂²⁻ and Ln@B₁₂H₁₂²⁻ Clusters in Septet Spin State using B3LYP/DEF, PBE/DEF, M06-2X/DEF and TPSSH/DEF Methods

Cluster	PBE	B3LYP	M06-2X	TPSSH
Np(a)B ₁₂ H ₁₂ ⁻				
< <u>S</u> ² >	12.008	12.005	12.005	12.008
BE	-8.98	-8.55	-8.88	-9.01
ΔE_{Gap}	0.065	1.238	0.301	0.680
$\mathbf{Pu}(\mathbf{a})\mathbf{B}_{12}\mathbf{H}_{12}$				
<s<sup>2></s<sup>	12.016	12.011	12.010	12.014
BE	-18.38	-17.81	-18.01	-18.23
ΔE_{Gap}	0.147	2.081	4.841	1.315
$Am@B_{12}H_{12}^+$				
<s<sup>2></s<sup>	12.720	13.009	13.011	12.964
BE	-34.24	-33.12	-33.18	-33.59
ΔE_{Gap}	0.138	1.671	4.066	0.658
$Pm@B_{12}H_{12}^{-}$				
<s<sup>2></s<sup>	12.006	12.004	12.008	12.005
BE	-8.83	-8.43	-9.02	-8.87
ΔE_{Gap}	0.380	1.557	1.006	1.044
Sm@B ₁₂ H ₁₂				
<\$ ² >	12.011	12.008	12.011	12.010
BE	-17.87	-17.49	-17.55	-17.82
ΔE_{Gap}	0.402	3.282	5.136	2.312
$Eu@B_{12}H_{12}^+$				
$\langle S^2 \rangle$	12.955	12.955	13.017	13.012
BE	-36.11	-35.11	-35.31	-35.68
ΔE_{Gap}	0.177	2.085	4.053	1.378

Energy (eV)	^a Occu	^b IRR_SR	^c IRR_RECP	MO(%) metal/cage
-12.913	2.00	10A1.g	22a1	66.58% Pu(s) +33% Cage
-10.979	2.00	11E1.u:1	25e-2	7.5% Pu(p) + 92% cage
-10.979	2.00	11E1.u:2	25e-1	7.5% Pu(p) + 92% cage
-10.979	2.00	9A2.u	23a1	8.5% Pu(p) + 91.5% cage
-10.116	2.00	11E1.g:1	26e-2	12.52% Pu(dyz)+ 87.48% cage
-10.116	2.00	11E1.g:2	26e-1	12.52% Pu(dxz)+ 87.48% cage
-10.086	2.00	12E1.g:1	27e-2	45.53% Pu(dx2-y2)+54.47% cage
-10.086	2.00	12E1.g:2	27e-2	45.53% Pu(dxy)+54.47% cage
-10.069	2.00	11A1.g	24a1	45.75% Pu(dz2)+54.26% cage
-9.157	2.00	12E1.u:1	28e-2	cage
-9.157	2.00	12E1.u:2	28e-1	cage
-9.137	2.00	10A2.u	25a1	cage
-8.491	2.00	12A1.g	26a1	21.96% Pu(s) +78.04% Cage
-7.624	2.00	13E1.g:1	29e-2	18.49% Pu (dyz)+81.51% Cage
-7.624	2.00	13E1.g:2	29e-1	18.49% Pu (dxz)+81.51% Cage
-7.607	2.00	13A1.g	27a1	19.98% Pu (dz2) + 80.02% cage
-7.597	2.00	14E1.g:1	30e-2	18.27% Pu(dx2-y2)+ 81.73%cage
-7.597	2.00	14E1.g:2	30e-1	18.27% Pu(dxy)+ 81.73%cage
-7.309	2.00	11A2.u	28a1	14.05% Pu(pz)+ 85.95%cage
-7.301	2.00	13E1.u:1	31e-2	13.54% Pu(px) + 86.46%cage
-7.301	2.00	13E1.u:2	31e-1	13.54% Pu(py) + 86.46%cage
-6.207	2.00	14E1.u:1	32e-2	24.61% Pu(f) + 75.39% cage
-6.207	2.00	14E1.u:2	32e-1	24.61% Pu(f) + 75.39%cage
-6.172	2.00	3A1.u	5a2	24.32%Pu(f) + 75.68%cage
-6.140	2.00	12A2.u	29a1	24.31%Pu(f) + 75.67%cage
-5.251	1.00	15E1.u:1	33e-2	75.08%Pu(f) + 24.92%cage
-5.251	1.00	15E1.u:2	33e-1	75.08%Pu(f) + 24.92%cage
-5.003	1.00	13A2.u	30a1	70.88%Pu(f) + 29.12%cage
-4.021	1.00	16E1.u:1	34e-2	71.98%Pu(f) + 28.02%cage
-4.021	1.00	16E1.u:2	34e-1	71.98%Pu(f) + 28.02%cage
-3.947	1.00	4A1.u	6a2	74.09%Pu(f) + 25.91%cage-HOMO
-3.895	0.00	14A2.u	31a1	73.27%Pu(f) + 26.73%cage-LUMO

Table S10. Analysis of the Orbitals Compositions of Septet Spin EndohedralPu@Al12H12 Cluster in C3v Symmetry Using PBE/TZ2P Method

^aOccu = Occupation of orbital

^bIRR_SR= Irreducible representation of molecular orbital using scalar relativistic ZORA approach

^cIRR_ECP= Irreducible representation of molecular orbital using relativistic ECP

Energy (eV)	^a Occ	^b IRR_SR	^c IRR_RECP	Contribution
-12.783	2.00	8A1.g	22a1	56.64 % Pu(s) + 43.36% cage
-11.088	2.00	8A2.u	23a1	20.71% Pu(pz) + 79.29% cage
-11.086	2.00	10E1.u:1	25e-2	19.43% Pu(px) + 80.57 % cage
-11.086	2.00	10E1.u:2	25e-1	19.43% Pu(py) + 80.57 % cage
-10.062	2.00	9E1.g:1	26e-2	10.56/5.42 % Sm (dyz) + 89.44/94.58 % cage
-10.062	2.00	9E1.g:2	26e-1	10.56/5.42 % Sm (dzx) + 89.44/94.58 % cage
-10.044	2.00	10E1.g:1	27e-2	10.56/5.42 % Sm (dx2-y2) + 89.44/94.58 %cage
-10.044	2.00	10E1.g:2	27e-2	10.56/5.42 % Sm (dxy) + 89.44/94.58 % cage
-10.042	2.00	9A1.g	24a1	11.04/5.08% Sm(dz2) + 88.96/ 94.92 % cage
-9.144	2.00	11E1.u:1	28e-2	cage
-9.144	2.00	11E1.u:2	28e-1	cage
-9.130	2.00	9A2.u	25a1	cage
-8.385	2.00	10A1.g	26a1	14.93% Sm(s) + 85.07% cage
-7.533	2.00	11E1.g:1	29e-2	13.3 % Sm(dyz) + 86.7 % cage
-7.533	2.00	11E1.g:2	29e-1	13.3 % Sm(dxz) + 86.7 % cage
-7.524	2.00	11A1.g	27a1	13.7 % Sm(dz2) + 80.46 % cage
-7.517	2.00	12E1.g:1	30e-2	13.3 % Sm(dx2-y2) + 86.7 % cage
-7.517	2.00	12E1.g:2	30e-1	13.3 % Sm(dxy) + 86.7 % cage
-7.432	2.00	10A2.u	28a1	19.54% Sm(pz) + 80.46 % cage
-7.424	2.00	12E1.u:1	31e-2	18.99% Sm(px) + 81.01 % cage
-7.424	2.00	12E1.u:2	31e-1	18.99% Sm(py) + 81.01 % cage
-5.985	2.00	13E1.u:1	32e-2	15.48% Sm(f) + 84.52 % cage
-5.985	2.00	13E1.u:2	32e-1	15.48% Sm(f) + 84.52 % cage
-5.976	2.00	3A1.u	5a2	14.48% Sm(f) + 85.52 % cage
-5.948	2.00	11A2.u	29a1	12.79% Sm(f) + 87.21 % cage
-5.096	1.00	14E1.u:1	33e-2	16.16% Sm(f) + 83.84 % cage
-5.096	1.00	14E1.u:2	33e-1	16.16% Sm(f) + 83.84 % cage
-4.650	1.00	12A2.u	30a1	79.83% Sm(f) + 20.17 % cage
-4.342	1.00	4A1.u	6a2	84.09% Sm(f) + 15.91 % cage
-4.335	1.00	15E1.u:1	34e-2	83.66% Sm(f) + 16.34 % cage
-4.335	1.00	15E1.u:2	34e-1	83.66% Sm(f) + 16.34 % cage-HOMO
-4.186	0.00	13A2.u	31a1	85.3% Sm(f) + 14.70 % cage-LUMO

Table S11. Analysis of the Orbitals Compositions of Septet Spin EndohedralSm@Al12H12 Cluster in C3v Symmetry Using PBE/TZ2P Method

^aOccu = Occupation of orbital

^bIRR_SR= Irreducible representation of molecular orbital using scalar relativistic ZORA approach

^cIRR_ECP= Irreducible representation of molecular orbital using relativistic ECP

Geometry	Inital_Geom	Final_Geom
STR1		
STR2		
STR3		
STR6		
STR4		
STR5		

Figure S1. Optimized exohedral and endohedral cluster using different initial geometry without any symmetry constrain at B3LYP/DEF level of theory.

Figure S2. Molecular orbital pictures of Al₁₂H₁₂²⁻ cluster in I_h symmetry using B3LYP/DEF Method

Figure S3. Molecular orbital pictures of endohedral $Pu@Al_{12}H_{12}$ cluster in C_{3v} symmetry using B3LYP/DEF Method. (Blue text represents MOs with metal-cage overlap, red text represent pure cage MOs, green text represent MOs with negligible mixing of cage with the metal)

Figure S4. Energy barrier plots of exohedral and endohedral a) Pu@Al₁₂H₁₂ and b) Sm@Al₁₂H₁₂ clusters, respectively, obtained using B3LYP/DEF method.

(a)

Figure S5. Density of state (DOS) plots of (a) Pu@Al₁₂H₁₂ and (b) Sm@Al₁₂H₁₂, septet spin exohedral clusters at B3LYP/DEF, PBE/DEF, M06-2X/DEF and TPSSH/DEF level of theory.

Figure S6. Density of state (DOS) of spin up (alpha) and spin down (beta) plots of (a) $An@Al_{12}H_{12}^{2-}$ (An = Pu²⁺, Am³⁺) and (b) $Ln@Al_{12}H_{12}^{2-}$ (Ln = Sm²⁺, Eu³⁺) septet spin exohedral clusters at B3LYP/DEF level of theory. (Vertical Arrow represents highest energy SOMO)

MOs of PuB ₁₂ H ₁₂	SR	SOC
SOMO	f:z ³	
SOMO-1	f:z ² x	
SOMO-2	f:z ² y	
SOMO-3	f:z	
SOMO-4	f:xyz	
SOMO-5	f:x	

FigureS7. Molecular orbital pictures of valence singly occupied molecular orbitals (SOMOs) of septet spin exohedral PuB₁₂H₁₂ at B3LYP/DEF level of theory