Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

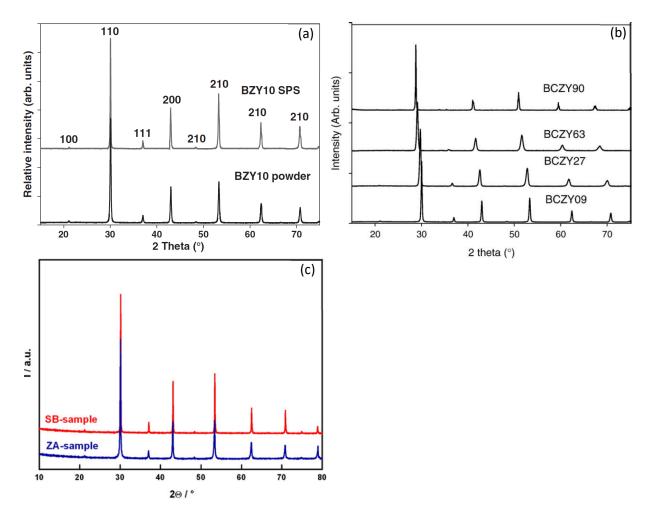
Electronic Supplementary Information (ESI)

The effect of grain size on the hydration of BaZr_{0.9}Y_{0.1}O_{3- δ} proton conductor studied by ambient pressure X-ray photoelectron spectroscopy

Angelique Jarry^{1,2,*}, Gregory S. Jackson³, Ethan J. Crumlin⁴, Bryan Eichhorn², Sandrine Ricote^{3,*}

1 Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA

2 Chemistry and Biochemistry University of Maryland, College Park, MD 20742, USA


3 Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, USA

4 Advanced Light Source, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA

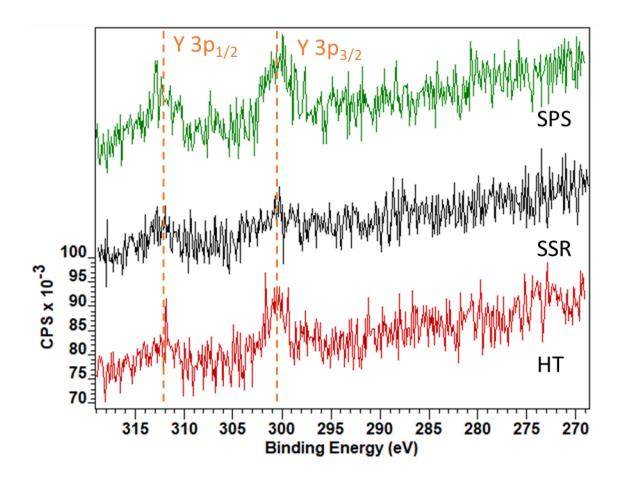
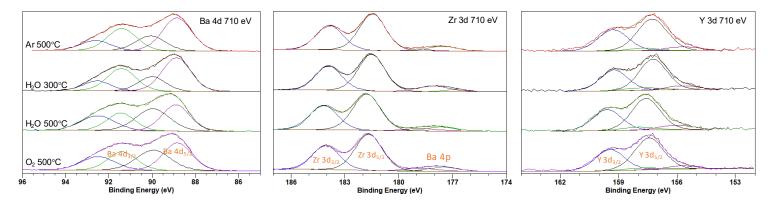
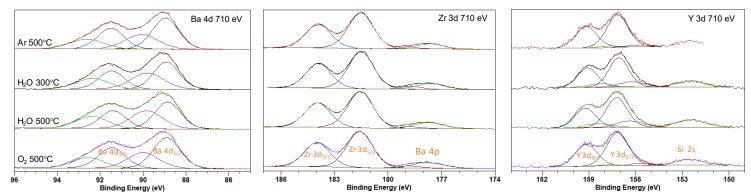
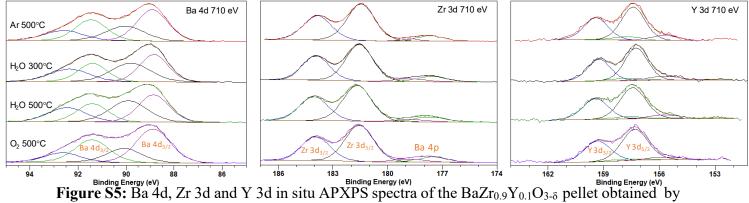

Corresponding author: <u>ajarry@umd.edu</u>; <u>sricote@mines.edu</u>

Table S1: List of the precursors used for the synthesis of the SPS, SSR and HT samples.


	SPS	SSR	HT
Barium carbonate	Aldrich, 99+ %	Aldrich, 99+ %	Fluka, purity: 99%
Zirconium oxide	Aldrich submicron	Aldrich submicron	Tosoh, purity: 99.9%
	powder: 99.5 %, 5.3 wt. %	powder: 99.5 %, 5.3 wt.	
	of yttria	% of yttria	
Yttrium oxide	Sigma-Aldrich, 99.99 %	Sigma-Aldrich, 99.99 %	Stanford Materials,
			purity:99.9%


Figure S1: X-Ray diffraction patterns of the SPS (a), SSR labeled BCZY09 (b) and HT labeled ZA (c) samples. Reproduced from [41], [7] and [42] respectively, by permission of Elsevier LDT.


Figure S2: C 1s APXPS spectra of the three $BaZr_{0.9}Y_{0.1}O_{3-\delta}$ pellets collected with incident X-ray energy PE= 710 eV at 500 °C at a p(O₂) of 100 mTorr. No formation of carbonate was observed.

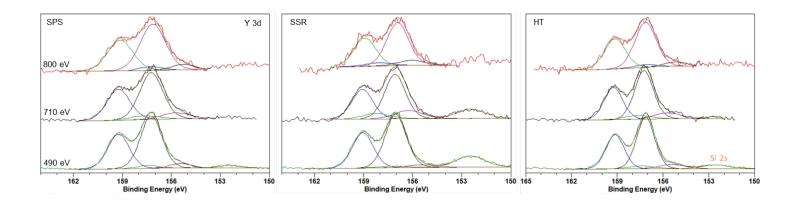

Figure S3: Ba 4d, Zr 3d and Y 3d in situ APXPS spectra of the BaZr_{0.9}Y_{0.1}O_{3- δ} pellet obtained by spark plasma sintering (SPS) collected with incident X-ray energy of 710 eV as a function of environment (100 mTorr of Ar, H₂O or O₂) and temperature (500 °C and 300 °C).

Figure S4: Ba 4d, Zr 3d and Y 3d in situ APXPS spectra of the BaZr_{0.9}Y_{0.1}O_{3-δ} pellet obtained by solid state reaction (SSR) collected with incident X-ray energy of 710 eV as a function of environment (100 mTorr of Ar, H₂O or O₂) and temperature (500 °C and 300 °C).

Figure S5: Ba 4d, Zr 3d and Y 3d in situ APXPS spectra of the BaZr_{0.9}Y_{0.1}O_{3-δ} pellet obtained by high temperature annealing (HT) collected with incident X-ray energy of 710 eV as a function of environment (100 mTorr of Ar, H₂O or O₂) and temperature (500 °C and 300 °C).

Figure S6: Y 3d *in situ* APXPS spectra of the BaZr_{0.9}Y_{0.1}O_{3- δ} (a) SPS, (b) SSR and (c) HT pellets as a function of the incident X-ray energy (800 eV, 710 eV, 490 eV) at 300 °C at a p(H₂O) of 100 mTorr. The collection at three different photon energies provides information from the surface to higher depth into the pellets (20, 18 and 12 Å respectively) according to the IMFP calculation for Y 3d.