Supporting Information: Investigation of glycerol hydrogen-bonding networks in choline chloride/glycerol eutectic-forming liquids using neutron diffraction

Adam H. Turner *,†,‡ and John D. Holbrey *,†

† The QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast BT9 5AG, UK

‡ Department of Chemistry, Ateneo de Manila University, Quezon City 1108, Philippines

E-mail: aturner@ateneo.edu; j.holbrey@qub.ac.uk

Figure S1: Atom types assigned to the choline chloride and glycerol components used in the EPSR simulation of the neutron scattering data.

Atom type	ε (kJ mol ⁻¹)	σ (Å)	<i>q</i> (e)
Choline Chloride			
Cl	0.80	4.0	-1.00000
Ν	0.70	3.2	-0.15456
CM	0.80	3.7	0.10974
CE	0.80	3.7	0.07411
HM	0.00	0.0	0.05244
CT	0.80	3.7	0.16201
HE	0.00	0.0	0.05244
HT	0.00	0.0	0.05244
OH	0.65	3.1	-0.31260
НО	0.00	0.0	0.22008
Glycerol			
CC	0.80	3.5	0.17000
CG	0.80	3.5	0.10700
0	0.65	3.1	-0.62500
OC	0.65	3.1	-0.62500
Н	0.00	0.0	0.39200
HG	0.00	0.0	0.06300

Table S1: Initial Lennard-Jones (ε and σ) and charge (q) parameters used for the reference potential of the Empirical Potential Structure Refinement model for both systems derived from the literature, and OPLS-AA.

Bond length (Å)		Bond Angle (°)	
Choline Chloride			
CM-HM	1.08	HM-CM-HM	108.50
CM-N	1.51	HM-CM-N	108.50
N-CE	1.56	CM-N-CM	108.50
CE-HE	1.08	CM-N-CE	110.00
CE-CT	1.46	N-CE-HE	108.50
CT-HT	1.08	N-CE-CT	114.60
CT-OH	1.44	HE-CE-HE	108.50
OH–HO	0.97	HE-CE-CT	108.50
		CE-CT-HT	108.50
		CE-CT-OH	112.60
		HT-CT-HT	108.50
		OH-CT-HT	108.50
		СТ-ОН-НО	118.00
Glycerol		~~ ~ ~	100.00
O–CG	1.45	CG–O–H	109.90
O-H	0.97	CCOCH	108.30
OC-H	0.97	O-CG-CC	108.88
OC-CC	1.45	CC–CG–HG	110.17
CG–CC	1.54	O-CG-HG	109.51
CC-HG	1.08	HG-CG-HG	108.57
CG-HG	1.08	CG-CC-CG	111.20
		OC-CC-CG	108.72
		CG-CC-HG	109.61
		OC-CC-HG	108.96

Table S2: Intramolecular bond distance (Å) and bond-angle (°) constraints used to define the basic structure of the components in the initial EPSR simulation model

Temperature (°C)	$\chi_{ChCl} = 0.33 / cP$	$\chi_{ChCl} = 0.5 / cP$
20	352	466
25	257	345
30	193	262
35	148	204
40	114	161
45	89.2	128
50	70.8	102
55	56.9	82.2
60	49.9	67.9

Table S3: Dynamic viscosity (cP) as a function of temperature (°C) for $\chi_{ChCl} = 0.33$ and $\chi_{ChCl} = 0.5$

Figure S2: Atom-centred pRDFs for ChCl:Gly ($\chi_{ChCl} = 0.50$)