Impact of intentional photo-oxidation of donor polymer and PC70BM acceptor on solar cell performance

Vanja Blazinic¹, Leif K. E. Ericsson¹, Igal Levine², Rickard Hansson¹, Andreas Opitz³, Ellen Moons¹

¹Department of Engineering and Physics, Karlstad University, SE-651 88 Karlstad, Sweden

²Department of Materials and Interfaces, Weizmann Institute of Science, P.B. 26, Rehovot 76100, Israel

³Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany

Table SI.1: Work function and surface photovoltage (SPV), measured by Kelvin probe in a N_2 -filled glovebox, of PC₇₀BM thin films, spincoated from CB solution on Si substrate, as a function of exposure time to simulated sunlight (AM1.5) in ambient air.

Exposure time (hours)	Work function (eV)	SPV (mV)
0	4.32	-32
0.25	4.60	-151
2	4.68	-199
19	4.69	-82
47	4.72	-20

Figure SI.2 Dependence of surface photovoltage (SPV), measured by Kelvin probe, of PC₇₀BM thin films on Si substrates, on exposure time to simulated sunlight (AM1.5) in ambient air. The SPV value is the work function under white illumination minus the work function in the dark.

