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I. SUPPLEMENTARY INFORMATION

Here we provide some details on the Hamiltonian model and Ehrenfest equations used in

the manuscript.

As indicated, we use a two-dimensional model for a diatomic molecule with a single

electron, where the in-plane electron motion is mediated by soft-core Coulomb interactions

with the nuclei, Vsc, and the coupling with the field E(t), Vint, while the nuclear motion is

affected by the gradient of the potential energy, evaluated as a Hellmann-Feynman force.

Defining the laboratory-fixed Cartesian coordinates for the nuclei, X̃
(α)
j (j = 1, 2 for the X,

Y components, α = a, b for the nuclei of mass Mα and charge Zα) and equivalently the x̃j

laboratory-fixed Cartesian electron coordinates, collectively written as X̃ and x̃ respectively,

the electronic degrees of freedom obey the time-dependent Schrödinger equation (TDSE)

i
∂

∂t
ψ(x̃) = −1

2

∑
j

∂2

∂x̃2j
ψ(x̃) + (Vsc + Vint)ψ(x̃) (1)

where we use atomic units, and the soft-core Coulomb potential is

Vsc = −
∑
α

Zα

[∑
j

(
x̃j − X̃(α)

j (t)
)2

+ ε2

]− 1
2

+ ZaZb

[∑
j

(
X̃

(2)
j (t)− X̃(1)

j (t)
)2]−1

(2)

where we have chosen ε = 1/
√

2. Although the model is general, in this work we will use

linearly polarized external fields, E = iE1 + jE2. Disregarding the effect of the magnetic

field (although the charged cation is accelerating in the presence of the field), in the dipole

approximation the interaction potential is given by

Vint =
∑
j

Ej(t)
(
x̃j − ZbX̃(b)

j (t)− ZaX̃(a)
j (t)

)
(3)

On the other hand, the nuclear degrees of freedom under the Hellmann-Feynman force

approximation obey Newton equations

d2

dt2
X̃

(α)
j = − 1

Mα

〈ψ(x̃)

∣∣∣∣∣∂(Vsc + Vint)

∂X̃
(α)
j

∣∣∣∣∣ψ(x̃)〉 . (4)

As the derivatives are analytic, the gradient is evaluated in close form. In this work both

nuclei are protons, so Zα = 1 and Mα = M .

It is convenient to decouple the internal and center of mass motion and work with coordi-

nates relative to the center of mass, not only to reduce the number of variables, but mainly
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FIG. 1: Diagram showing the choice of coordinates used in the model

to avoid having to work with very large grids for the electronic coordinates, as the whole

molecular cation moves in the gradient of the field. We first neglect the difference between

the molecule’s center of mass and the nuclear center of mass, XCM =
∑

αMαX̃/
∑

αMα,

and define the molecular frame Cartesian coordinates, as shown in the figure, x = x̃−XCM ,

X = X̃ − XCM . Then Vsc is a function of x and X(t), while Vint = E(t)
(
x−XCM

)
, is a

function of x and XCM(t). Now the equations for X depend only on the gradient of Vsc, while

those for XCM depend only on the gradient of Vint, which can be immediately integrated:

i
∂

∂t
ψ(x) = −1

2

∑
j

∂2

∂x2j
ψ(x) +

[
Vsc + E(t)x− E(t)XCM(t)

]
ψ(x) (5)

and
d2

dt2
X

(α)
j (t) = − 1

Mα

〈ψ(x)

∣∣∣∣∣ ∂Vsc∂X
(α)
j

∣∣∣∣∣ψ(x)〉 , (6)

d2

dt2
XCM(t) =

1

4M
E(t) (7)

where, within the same level of approximation, we use the electron mass for the reduced

mass of the system and neglect the mass-polarization term. In fact, in Eq.(5), the last term

in the parenthesis can be taken away from the TDSE by a unitary transformation of the

wave function, which receives a time-dependent phase due to the accelerated motion of the

center of mass of the charged molecule in the presence of the field, ϕ(t) =
∫ t
0
E(t′)XCM(t′)dt′,

where XCM(t) is obtained from the solution of Eq.(7).

The internal nuclear motion can be further expressed in polar variables, X
(a)
1 =

3



−r/2 cos θ, X
(a)
2 = −r/2 sin θ (X

(b)
j = −X(a)

j ), such that

Vsc = −
[
(x+

r

2
cos θ)2 + (y +

r

2
sin θ)2 + ε2

]−1/2
−
[
(x− r

2
cos θ)2 + (y − r

2
sin θ)2 + ε2

]−1/2
+

1

r
(8)

≡ V1 + V2 + r−1 and therefore,

d2

dt2
r =

1

M

(
V 3
1 − V 3

2

)
[〈x〉 cos θ + 〈y〉 sin θ] +

r

2M

(
V 3
1 + V 3

2

)
− 2

Mr2
(9)

d2

dt2
θ =

1

Mr

(
V 3
1 − V 3

2

)
[〈y〉 cos θ − 〈x〉 sin θ] (10)

where 〈x〉 ≡ 〈ψ(x)|x|ψ(x)〉 and 〈y〉 ≡ 〈ψ(x)|y|ψ(x)〉 are the average electronic positions,

obtained by integrating the electronic wave function in the grid.
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