Supporting Information for Beyond the Coulson-Fischer point: Characterizing single excitation CI and TDDFT for excited states in single bond dissociations

Diptarka Hait,^{1, a)} Adam Rettig,^{1, a)} and Martin Head-Gordon^{1, 2, b)} ¹⁾Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA ²⁾Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

^{a)}These authors contributed equally to this work.

^{b)}Electronic mail: mhg@cchem.berkeley.edu

FIG. 1: $M_S = 0$ TDDFT and TDDFT/TDA excited states predicted for NH_3/aug -cc-pVTZ.

FIG. 2: $M_S = 0$ TDDFT and TDDFT/TDA excited states predicted for C_2H_6/aug -cc-pVDZ.

FIG. 3: $M_S = 0$ TDDFT and TDDFT/TDA excited states predicted for LiH/aug-cc-pVTZ. Note that the PBE surfaces have an additional kink around 5Å of separation, which probably originates from the significant delocalization error driven CT contamination in the UPBE ground state.

FIG. 4: $M_S = 1$ TDDFT/TDA excited states predicted for NH_3 /aug-cc-pVTZ (along with the corresponding UKS ground state).

FIG. 5: $M_S = 1$ TDDFT/TDA excited states predicted for C_2H_6 /aug-cc-pVDZ (along with the corresponding UKS ground state).

(c) LRC- ω PBEh/TDA

FIG. 6: $M_S = 1$ TDDFT/TDA excited states predicted for LiH/aug-cc-pVTZ (along with the corresponding UKS ground state). Note that the PBE surfaces have a discontinuity around 5Å of separation, which probably originates from the significant delocalization error driven CT contamination in the UPBE ground state.