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Fig. S1: Schematic illustration of a three-electrode beaker cell used for electrochemical measurements. The Li
reference electrode is separated from a Mg(TFSA)2-90 mol% CsTFSA electrolyte using a quartz tube with a porous
ceramic part (LiRE). The electrolyte temperature was maintained at 150 ◦C.

Fig. S2: (a) Crystal structure of tetragonal spinel MgMn2O4 (Space group: I41/amd). Wyckoff positions of 4a, 8d
and 16h are occupied by Mg, Mn and O, respectively. Four I-centered tetragonal lattices are displayed. (b)
Relationship between I -centered tetragonal lattices (black lines) and F-centered tetragonal lattices (red lines).
Black spheres denote lattice points. In order to simplify the comparison between tetragonal spinels (Space group:
I41/amd) and cubic spinels (Space group: Fd-3m), crystallographic nontation (lattice constant, orientation, etc.) for
tetragonal spinels is adopted based on the unconventional F-centered lattice.
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Fig. S3: TEM observation of MgMn2O4 calcined at 425 ◦C. (a) Bright field image. (b) dark field image. (c) Selected
area diffraction pattern. Dark field image was obtained from a 400 reflection spot circled by red line in the
diffraction pattern.
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Fig. S4: Mg intercalation into spinel MgMn2O4. (Top) Discharge profile of MgMn2O4 starting from as-synthesized
state. (Bottom) XRD patterns of MgMn2O4 discharged from as-synthesized state.
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Fig. S5: Mn 2p XPS spectra of pristine and charged MgMn2O4. The electrodes were galvanostatically charged at a
rate of C/20 at 150 ◦C. Note that the electric charge of 135 and 270 mAh/g involves electrolyte decomposition as
well as Mg-deintercalation.
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Fig. S6: XRD simulation of tetragonal spinel MgxVa1−xMn2O4 (Va : vacancy). The simulation is based on
non-inverted configuration. Mg-extraction does not significantly change intensity ratios of 113/311, 004/400, and
404/440 diffraction peaks.
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Fig. S7: XRD simulation of cubic spinel Mg0.5Mn2O4 and tetragonal spinel MgMn2O4 with different phase ratios.
The simulation is based on non-inverted configuration in both cubic Mg0.5Mn2O4 and tetragonal MgMn2O4.
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Fig. S8: XRD simulation of tetragonal spinel MgMn2O4 with different lattice constant c. Lattice shrinkage along c
axic converges 113/311, 004/400, and 404/440 diffraction peaks into one peak.



8

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

4 sin /  (1/Å)
33

3

11
1

40
0

00
4

31
1

31
1

11
3

44
040

4

33
3

51
1

11
5

40
0

00
4

11
3

22
0

20
2

 Simulation / Mg0.5Mn0.5[Mg0.5Mn1.5]O4

 Simulation / Mg0.8Mn0.2[Mg0.2Mn1.8]O4

 Simulation / Mg1.0Mn0.0[Mg0.0Mn2.0]O4

In
te

ns
ity

 

11
1

44
0

40
4

51
1

11
5

31
1

44
0

40
4

33
3

51
1

11
5

40
0

00
4

11
3

22
020

2

11
1

22
020

2

Fig. S9: XRD simulation of inverted configuration in tetragonal spinel MgMn2O4. with different lattice constant c.
Lattice shrinkage along c axic converges 113/311, 004/400, and 404/440 diffraction peaks into one peak.


