Supporting information:

TiO2-supported Pt single atoms by surface organometallic chemistry for photocatalytic hydrogen evolution

Gabriel Jeantelot,^a Muhammad Qureshi,^a Moussab Harb,^{*a} Samy Ould-Chikh,^a Dalaver H. Anjum,^b Edy Abou-Hamad,^b Antonio Aguilar-Tapia,^c Jean-Louis Hazemann,^c Kazuhiro Takanabe,^a Jean-Marie Basset^{*a}

a. Kaust Catalysis Center (KCC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

b. Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia

c. Institut Néel, UPR2940 CNRS, University of Grenoble Alpes, F-38000 Grenoble (France)

Supplementary figures:

Fig. S1 Setup used for grafting reactions

Fig. S2 Photocatalysis setup

Fig. S3 Infrared spectroscopy (DRIFTS) of a) 0.5% Pt_{GR}:TiO₂ ; b) 5% Pt_{GR}:TiO₂ ; c) Me₂Pt(COD) on KBr.

Material	Band positions					
Pt _{GR} :TiO ₂ (this work)	1479	1452	1431	1342	1313	
Me ₂ Pt(COD)	1477	1448	1428	1341	1313	
(this work)						
Cl ₂ Pt(COD)	1479 ¹ , 1476 ²	1446, ³ 1451 ²	1432 ¹ , 1427 ³ , 1426 ²	1339 ^{1,3} , 1340 ²	1310 ¹ , 1312 ³	
1,5-cyclooctadiene	1487 ^{4,5} , 1483 ³	1448 ⁵ , 1447 ⁴ , 1443 ³	1426 ⁵ , 1425 ⁴ , 1423 ³	1357 ⁵ , 1356 ⁴ , 1352 ³	1320 ⁵ , 1321 ⁴	

Table S1 Comparative table of the infrared absorption bands of the grafted materials, Pt(COD) complexes (Me₂Pt(COD); Cl₂Pt(COD)) and "free" 1,5-cyclooctadiene.

Fig. S4 $^{\rm 13}{\rm C}$ MAS SSNMR spectrum of cyclooctadiene adsorbed on {001}-anatase

Fig. S5 HERFD-XANES absorption spectra and fits using a pseudo-voigt function for the whiteline and arctangent function for the step. An additional lorentzian peak had to be included in the fitting model of the $Pt(acac)_2$ sample.

Sample:	Oxidation number:	White line pseudo-	R-factor:	χ²/ν:
---------	-------------------	--------------------	-----------	-------

		Voigt area (arbitrary units):		
Pt powder (ref.)	0	7.1	0.002	0.004
(CH ₃) ₂ Pt(COD) (ref.)	+2	11.3	0.002	0.005
Pt(acac) ₂ (ref.)	+2	12.2	0.001	0.02
PtO ₂ (ref.)	+4	20.9	0.009	0.03
0.5% Pt _{GR} :TiO ₂		12.5	0.003	0.01

Table S2 fitting results of Pt-L₃ edge HERFD–XANES of 0.5% Pt:{001}-anatase, along with four Pt references

Fig. S6 Contour plots of the wavelet transform magnitude showing the (k,R) localization of each FT-EXAFS contribution measured at the Pt L_3 -edge for 0.5% Pt_{GR}:TiO₂, Pt metallic powder, Pt(COD)(Me)₂, and PtO₂

Fig. S7 Platinum foil EXAFS fitting using only the first Pt-Pt scattering path to determine the amplitude reduction factor (S_0^2). k-range = 2.8 – 12 ; dk=1 ; R-range = 1.373 – 3.415 ; χ^2/ν = 234.12 ; R-factor = 0.42 %

Figure S8 O-Pt-O DFT-optimized structure

Fig. S9 Complete DFT-optimized structures for the Pt reduction by CO reaction with the Ti-O-Pt(COD)-F-Ti structure.

Fig. S10 Proposed mechanism for Pt reduction by CO for the Ti-O-Pt(COD)-O-Ti structure

Figure S11 Xenon lamp photon distribution.

Fig. S12 OER activity and exponential decay fits of {001}-anatase and 0.5%Pt_{GR}:TiO₂. First 30 minutes excluded due to gas mixing kinetics in the reactor

Fig. S13 TEM micrographs of 0.5%Pt_{GR}:TiO₂ after photocatalysis with sacrificial methanol. Only nanoparticles are visible

Fig. S14 Backwards reaction rates measured on: a) impregnated 0.5%Pt_{NP}:TiO₂ and b) support blank ({001}-anatase) showing no noticeable activity.

Bibliography:

- 1 J. Mink and G. Keresztury, Appl. Spectrosc., 1993, 47, 1446–1451.
- J. A. Baldwin, I. S. Butler and D. F. R. Gilson, Inorganica Chim. Acta, 2006, **359**, 3079–3083.
- 3 D. B. Powell and T. J. Leedham, Spectrochim. Acta Part A Mol. Spectrosc., 1972, 28, 337–341.
- 4 G. G. Barna and I. S. Butler, J. Raman Spectrosc., 1978, 7, 168–172.
- 5 Spectr. Database Org. Compd., SDBS No.: 2054.