Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supporting Information for:

Aromatic Character of $[Au_{13}]^{5+}$ and $[MAu_{12}]^{4+/6+}$ (M=Pd,Pt) Core in Ligand Protected Gold Nanoclusters. Interplay Between Spherical and Planar σ -Aromatics

Nikita Fedik,^a Alexander Boldyrev,^a and Alvaro Muñoz-Castro^b

^aDepartment of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.

^bGrupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile.

Page 2.

Figure S1. Canonical molecular orbitals of $[Au_{13}]^{5+}$.

Figure S2. Chemical bonding pattern for 8-ve $[Au_{13}]^{5+}$ as shown by the AdNDP analysis, denoting 13c-2e bond and representative 5d lone-pairs. ON stands for occupation number.

Figure S3. Chemical bonding pattern for 8-ve $[PdAu_{12}]^{4+}$ as shown by the AdNDP analysis, denoting 13c-2e bond and representative lone-pairs on Pd (similar lone-pairs were found for gold atoms, Figure S2). ON stands for occupation number.

Page 3.

Figure S4. Chemical bonding pattern for 6-ve $[PdAu_{12}]^{6+}$ as shown by the AdNDP analysis, denoting 13c-2e bond and representative lone-pairs on Pd (similar lone-pairs were found for gold atoms, Figure S2). ON stands for occupation number.

Figure S5. Chemical bonding pattern for 8-ve $[PtAu_{12}]^{4+}$ as shown by the AdNDP analysis, denoting 13c-2e bond and representative lone-pairs on Pt (similar lone-pairs were found for gold atoms, Figure S2). ON stands for occupation number.

Page 4.

Figure S6. Chemical bonding pattern for 6-ve $[PtAu_{12}]^{6+}$ as shown by the AdNDP analysis, denoting 13c-2e bond and representative lone-pairs on Pt (similar lone-pairs were found for gold atoms, Figure S2). ON stands for occupation number.

Figure S7. Alternative chemical bonding pattern for 6-ve $[PtAu_{12}]^{6+}$ as shown by the AdNDP analysis. All the 6 ve are localized only on Au_{10} ribbon. ON stands for occupation number.

Figure S8. Molecular orbitals for $[Au_{13}]^{5+}$, $[PdAu_{12}]^{4+}$ and $[PdAu_{12}]^{6+}$, accounting for the respective $1S^2$ $1P_{x,y}^4$ $1P_z^0$ electronic configuration

Figure S1. Canonical molecular orbitals (MO) of $[Au_{13}]^{5+}$. One can clearly see that all spherical aromatic multi-centered bonds recovored by the AdNDP analysis orginate from these MOs.

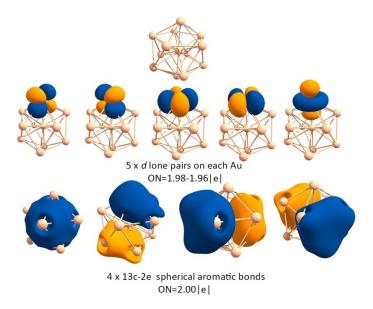


Figure S2. Chemical bonding pattern for 8-ve $[Au_{13}]^{5+}$ as shown by the AdNDP analysis, denoting 13c-2e bond and representative 5d lone-pairs. ON stands for occupation number.

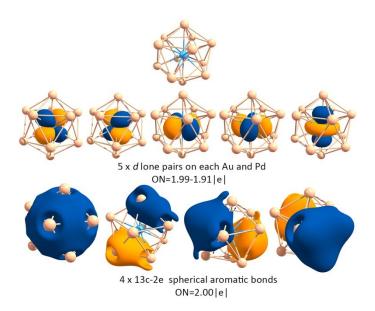


Figure S3. Chemical bonding pattern for 8-ve $[PdAu_{12}]^{4+}$ as shown by the AdNDP analysis, denoting 13c-2e bond and representative lone-pairs on Pd (similar lone-pairs were found for gold atoms, Figure S1). ON stands for occupation number.

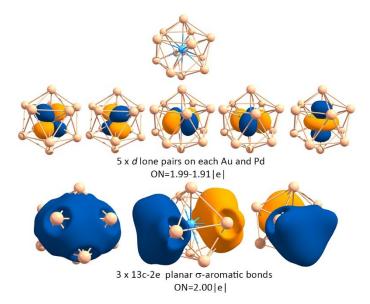


Figure S4. Chemical bonding pattern for 6-ve $[PdAu_{12}]^{6+}$ as shown by the AdNDP analysis, denoting 13c-2e bond and representative lone-pairs on Pd (similar lone-pairs were found for gold atoms, Figure S1). ON stands for occupation number.

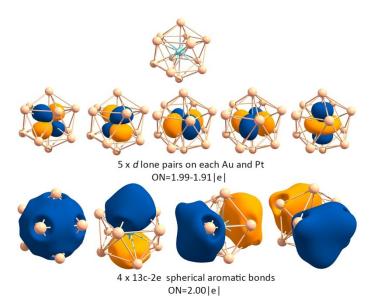


Figure S5. Chemical bonding pattern for 8-ve $[PtAu_{12}]^{4+}$ as shown by the AdNDP analysis, denoting 13c-2e bond and representative lone-pairs on Pt (similar lone-pairs were found for gold atoms, Figure S1). ON stands for occupation number.

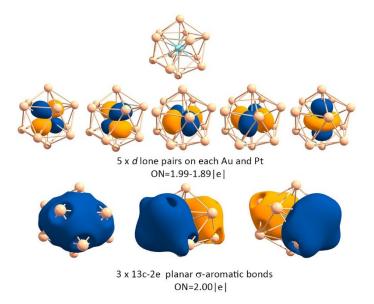


Figure S6. Chemical bonding pattern for 6-ve $[PtAu_{12}]^{6+}$ as shown by the AdNDP analysis, denoting 13c-2e bond and representative lone-pairs on Pt (similar lone-pairs were found for gold atoms, Figure S1). ON stands for occupation number.

Figure S7. Alternative chemical bonding pattern for 6-ve $[PtAu_{12}]^{6+}$ as shown by the AdNDP analysis. All the 6 ve are localized only on Au_{10} ribbon. ON stands for occupation number.

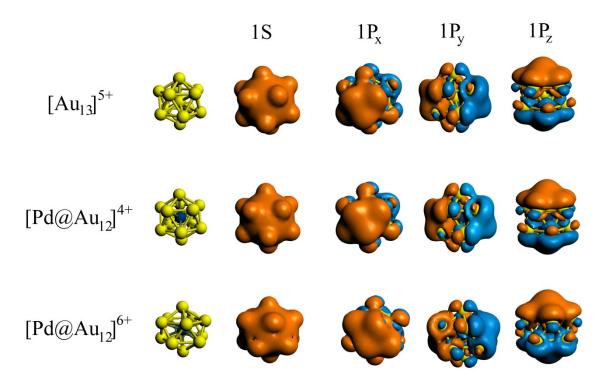


Figure S8. Molecular orbitals for $[Au_{13}]^{5+}$, $[PdAu_{12}]^{4+}$ and $[PdAu_{12}]^{6+}$, accounting for the respective $1S^2$ $1P^6$ and $1S^2$ $1P_{x,y}^4$ $1P_z^0$ electronic configuration. For $[PdAu_{12}]^{6+}$ the $1P_z^0$ level remains as LUMO.