Electronic Supplementary Information

UV-promoted radical formation, and near-IR-induced and spontaneous conformational isomerization in monomeric 9-methylguanine isolated in low-temperature Ar matrices

Maciej J. Nowak*a ${ }^{*}$, Igor Reva, ${ }^{* b}$, A. J. Lopes Jesus ${ }^{\text {c }}$, Leszek Lapinski, ${ }^{\text {a }}$ and Rui Fausto ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
${ }^{\mathrm{b}}$ CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
c CQC, Faculty of Pharmacy, University of Coimbra, 3004-295, Coimbra, Portugal

Table S1. Geometries of twenty-one isomers of 9-methylguanine (9 mG) optimized at the $\mathrm{DFT}(\mathrm{B} 3 \mathrm{LYP}) / 6-31++\mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory and their relative electronic energies $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ calculated at the same level. Color codes: C - grey, H - white, N - blue, O - red.

Main Canonical Forms

AO1 (AO)
0.00

AH1
2.42

IO1
58.59

AO2
81.97

AH2
4.83

IO2
67.40

Table S1. Continued
High-energy Canonical Forms

Table S1. Continued
Non-Canonical Forms

AO3
73.11

IH9
190.84

IO3
192.35

AH3
107.21

IH10
190.27

IO4
120.74

IO5
97.65

Table S2. comparison of the absorptions observed in the experimental mid-IR spectrum of $\mathbf{9 m G}$ isolated in an Ar matrix at 14 K with the results of harmonic vibrational calculations carried out for the AO, AH1 and AH2 isomers of this molecule at the B3LYP/6-31++G(d,p) level of theory.

Experimental$(\mathrm{Ar}, 14 \mathrm{~K})^{a}$	Calculated $^{\text {b }}$		Assignment ${ }^{\text {c }}$
	\tilde{v}	I	
3576	3585	87	vOH (AH2)
3571	3562	50	$\mathrm{v}_{\mathrm{a}} \mathrm{NH}_{2}$ (AH2)
3568	3574	92	vOH (AH1)
3565	3557	44	$v_{\mathrm{a}} \mathrm{NH}_{2}$ (AH1)
3543/3535	3515	39	$\mathrm{v}_{\mathrm{a}} \mathrm{NH}_{2}$ (AO)
3460/3454	3434	83	$v_{s} \mathrm{NH}_{2}$ (AH2)
3458/3452	3431	72	$v_{s} \mathrm{NH}_{2}$ (AH1)
3440/3435	3419	51	$\nu \mathrm{N} 1 \mathrm{H}$ (AO)
3430/3427	3404	49	$v_{s} \mathrm{NH}_{2}(\mathbf{A O})$
1752/1741	1758	784	$\nu \mathrm{C}=\mathrm{O}$ (AO)
1656			(AH1)
1652			(AH2)
1643/1640	1646	441	$\mathrm{vC}_{5} \mathrm{C}_{6} ; \mathrm{vC}_{4} \mathrm{~N}_{3}$ (AH1)
1640/1634	1645	494	$\nu_{4} \mathrm{~N}_{3} ; \nu_{6} \mathrm{~N}_{1}(\mathbf{A H 2)}$
1622	1633	473	$\mathrm{vC}_{2} \mathrm{~N}_{3} ; \delta \mathrm{NH}_{2}$ (AO)
1608	[1607	181	$\nu_{2} \mathrm{~N}_{10} ; \delta \mathrm{NH}_{2}$ (AH1)
1608	[1606	229	$\nu_{2} \mathrm{~N}_{10} ; \delta \mathrm{NH}_{2}$ (AH2)
1598/1592	1590	494	$\nu \mathrm{C}_{4} \mathrm{~N}_{3} ; \nu_{6} \mathrm{~N}_{1}$ (AH2)
1593/1589/1584	1592	430	$\nu^{2} \mathrm{C}_{4} \mathrm{~N}_{3} ; v \mathrm{C}_{4} \mathrm{C}_{5}$ (AH1)
1582	1587	218	$\nu_{2} \mathrm{~N}_{3}(\mathbf{A O})$
1575			(AO)
1561	1559	112	$v \mathrm{C}_{4} \mathrm{C}_{5} ; \mathrm{vC}_{4} \mathrm{~N}_{3}(\mathbf{A O})$
1540	1539	111	$\mathrm{vC}_{8} \mathrm{~N}_{7} ; \mathrm{vC}_{4} \mathrm{~N}_{9}$ (AO)
1524	1526	68	$\nu^{2} \mathrm{~N}_{7} ; \mathrm{vC}_{4} \mathrm{~N}_{9}$ (AH1)
1522	1522	34	$\nu_{8} \mathrm{~N}_{7} ; \nu_{4} \mathrm{C}_{4} \mathrm{~N}_{9}$ (AH2)
1492	1494	43	$\delta \mathrm{CH}_{3}$ as; $\mathrm{vC}_{6} \mathrm{~N}_{1}$ (AH2)
1483	1490	32	$\delta \mathrm{CH}_{3}$ as; $\mathrm{vC}_{6} \mathrm{~N}_{1}$ (AH1)
1472	1480	42	$\nu_{6} \mathrm{~N}_{1} ; \nu_{4} \mathrm{~N}_{3}$ (AH2)
1467/1465	1472	161	$\nu_{6} \mathrm{~N}_{1} ; \nu^{2} \mathrm{C}_{8} \mathrm{~N}_{7}$ (AH1)
1448/1445	1450	85	${ }^{2} \mathrm{C}_{6} \mathrm{~N}_{10} ; \mathrm{vC}_{8} \mathrm{~N}_{7}$ (AH2)
1441/1440	1446	79	$v \mathrm{C}_{8} \mathrm{~N}_{7} ; \mathrm{vC}_{4} \mathrm{~N}_{9}$ (AH1)
1437/1435	1442	117	$\mathrm{vC}_{2} \mathrm{~N}_{10}$ (AH1)
1434/1431	1440	109	$\delta \mathrm{CH}_{3} \mathrm{~s}$ (AH2)
1415/1412	1416	116	$\delta \mathrm{CH}_{3} \mathrm{~s}$ (AH1)
1409/1408	1412	149	
1376/1373	1369	42	$\nu^{2} \mathrm{C}_{5} \mathrm{C}_{6}(\mathbf{A O})$
1336	1330	19	$\mathrm{vC}_{8} \mathrm{~N}_{9} ; \mathrm{vC}_{5} \mathrm{~N}_{7}$ (AO)
1333	1331	48	$v \mathrm{C}_{8} \mathrm{~N}_{9} ; \mathrm{vC}_{8} \mathrm{~N}_{7}(\mathbf{A H 2})$
1329	1328	34	$\nu^{2} \mathrm{C}_{4} \mathrm{C}_{5}$ (AH1)
1310	1306	51	$\delta \mathrm{N}_{1} \mathrm{H}$ (AO)
1298	1294	86	$\mathrm{vC}_{5} \mathrm{~N}_{7} ; \mathrm{vC}_{4} \mathrm{~N}_{3} ; \mathrm{vC}_{8} \mathrm{~N}_{9}$ (AH2)
1283/1275	1281	234	$\delta \mathrm{OH}$ (AH2)
1280/1277	1286	37	

Table S2. Continued

Experimental $(\mathrm{Ar}, 14 \mathrm{~K})^{a}$	Calculated $^{\text {b }}$		Assignment ${ }^{\text {c }}$
	v	I	
1239	1222	12	$\delta \mathrm{C}_{8} \mathrm{H}(\mathbf{A O})$
1225/1222	1221	42	$\delta \mathrm{C}_{8} \mathrm{H}$ (AH1)
1205			(AH1)
1174	1195	184	$\delta \mathrm{OH}$ (AH1)
1137	1124	59	$\nu \mathrm{C}_{2} \mathrm{~N}_{3} ; \nu \mathrm{C}_{5} \mathrm{~N}_{7} ; \nu \mathrm{C}_{6} \mathrm{~N}_{1}(\mathbf{A O})$
1083/1080	1080	20	$\rho \mathrm{NH}_{2} ; \nu_{2} \mathrm{C}_{2} \mathrm{~N}_{3}$ (AH1)
1054	1048	10	$\nu \mathrm{CO} ; \mathrm{c}_{2} \mathrm{~N}_{3}$ (AH1)
1052	1046	36	$\nu \mathrm{CO} ; \nu_{2} \mathrm{~N}_{3}$ (AH2)
1048	1039	41	$\rho \mathrm{CH}_{3}$ (AO)
1045/1044	1039	45	$\rho \mathrm{CH}_{3}$ (AH2)
1025			(AO)
1013	1007	17	δ ring (AO)
1005	994	76	δ ring (AH1)
1002	993	12	δ ring (AH2)
988			(AH1)
794	773	24	γ ring (AH2)
792	777	23	γ ring (AH1)
777	750	17	γ ring (AO)
726	719	10	δ ring (AH2)
725	718	16	δ ring (AH1)
722	716	24	δ ring (AO)
691/695	681	32	$\gamma \operatorname{ring}(\mathbf{A O})$
673/668	667	18	$\delta \mathrm{N}_{10} \mathrm{C}_{2} \mathrm{~N} ; \delta \mathrm{OCN}(\mathbf{A H 2)}$
662	664	22	$\delta \mathrm{N}_{10} \mathrm{C}_{2} \mathrm{~N} ; \delta \mathrm{OCN}(\mathbf{A O})$
643/642	637	26	$\gamma \operatorname{ring}(\mathbf{A O})$
634	631	34	γ ring (AH1)
631	626	15	γ ring (AH2)
586	583	72	$\gamma \mathrm{N}_{1} \mathrm{H}$ (AO)
513/510	535	96	$\tau \mathrm{OH}$ (AH1)
507	517	111	$\tau \mathrm{OH}$ (AH2)

${ }^{a}$ Observed wavenumbers in $\mathrm{cm}^{-1} .{ }^{b}$ Calculated wavenumbers ($\tilde{\mathrm{v}}, \mathrm{cm}^{-1}$) are scaled by 0.95 and 0.98 , above and below $3000 \mathrm{~cm}^{-1}$, respectively, and calculated infrared intensities (I) are expressed in km $\mathrm{mol}^{-1} .{ }^{c}$ Assigning the experimental bands to a specific form was helped by the spectral changes resulting from the selective NIR irradiations and dark kinetics. Description of the vibrational modes was based on the vibrational analysis provided by the VibAnalysis software, ${ }^{\text {S1 }}$ supported by animation of the vibrations using the ChemCraft software. ${ }^{\text {S2 }}$ Abbreviations: v, stretching; δ, in-plane deformation; γ, out-of-plane deformation ρ, rocking; τ, torsion; s, symmetric; a, antisymmetric. Experimental absorptions that do not have counterparts in harmonic vibrational calculations are assigned as (AH1), (AH2) or (AO), depending on their behaviour upon the NIR irradiations and dark kinetics. See Figure S 1 for the atom numbering scheme.

Supporting References:

S1. G. A. Zhurko Chemcraft - Graphical Program for Visualization of Quantum Chemistry Computations, Version 1.8; http://www.chemcraftprog.com, 2015.
S2. (a) F. Teixeira, VibAnalysis - Tools for performing vibrational analysis on molecular systems, https://github.com/teixeirafilipe/vibAnalysis, 2019; (b) F. Teixeira and M. Cordeiro, J. Chem. Theory Comput., 2019, 15, 456-470.

Table S3. Anharmonic wavenumbers (\tilde{v}, unscaled) and IR intensities (I) calculated for first overtones of the OH, NH and NH_{2} stretching vibrations, and combination tones involving the symmetric and antisymmetric NH_{2} stretching vibrations. Anharmonic vibrational calculations were carried out at the B3LYP/6-31++G(d,p) level of theory for the AO, AH1 and AH2 isomeric forms of $\mathbf{9 m G}$.

Isomer	Vibrational mode	$\tilde{v} / \mathrm{cm}^{-1}$	$\mathrm{I} / \mathrm{km} \mathrm{mol}^{-1}$
AO	$2 v_{\mathrm{a}} \mathrm{NH}_{2}$	6981.221	2.341
	$\left(v_{\mathrm{a}}+v_{\mathrm{s}}\right) \mathrm{NH}_{2}$	6826.379	2.099
	$2 v_{\mathrm{s}} \mathrm{NH}_{2}$	6799.100	2.389
	$2 \mathrm{NN1H}^{2}$	6726.461	2.992
AH1	$2 v_{\mathrm{a}} \mathrm{NH}_{2}$	7091.334	2.316
	$2 \mathrm{vOH}^{2}$	6964.016	6.389
	$\left(v_{\mathrm{a}}+v_{\mathrm{s}}\right) \mathrm{NH}_{2}$	6917.521	1.987
	$2 v_{\mathrm{s}} \mathrm{NH}_{2}$	6870.379	1.981
AH2	$2 v_{\mathrm{a}} \mathrm{NH}_{2}$	7106.455	2.340
	$2 \mathrm{OOH}^{2}$	7000.517	4.270
	$\left(v_{\mathrm{a}}+v_{\mathrm{s}}\right) \mathrm{NH}_{2}$	6928.913	2.012
	$2 v_{\mathrm{s}} \mathrm{NH}_{2}$	6878.006	1.994

Figure S1. Molecular structure of 9-methylguanine ($\mathbf{9 m G}$) in the amino-oxo (AO) form, including the numbering of selected atoms.

Figure S2. (a) Mid-IR spectra of (red) AH2 and (blue) AH1 conformers of the aminohydroxy tautomer of 9-methylguanine (9 mG) theoretically calculated at the DFT(B3LYP)/6$31++G(d, p)$ level. The IR intensities computed for AH1 were multiplied by -1 . The theoretical wavenumbers were scaled by 0.98 ; (b) experimental difference spectrum: the spectrum recorded after irradiation of matrix-isolated 9 mG at $6965 \mathrm{~cm}^{-1}$ minus the spectrum recorded before that irradiation; (c) experimental difference spectrum: the spectrum recorded after irradiation of matrix-isolated 9 mG at $6980 \mathrm{~cm}^{-1}$ minus the spectrum recorded before that irradiation.

Figure S3. Time evolution of the populations of the AH1 (closed blue circles) and AH2 (open red circles) conformers of 9 mG trapped in an Ar matrix at 12 K by keeping the matrix in dark for 720 minutes. The initial conformational composition was obtained by irradiating the matrix at wavenumbers within the $6966-6956 \mathrm{~cm}^{-1}$ range for several minutes. The populations of the two forms were estimated from integration of the 1448/1445 (AH2) and 1441/1440 (AH1) pairs of doublets. Horizontal dashed lines represent the relative abundances estimated for the two conformers (AH1 : AH2 relates as 80 : 20) at the photostationary state (compare with Fig. 6 of the main text).

Figure S4. Fragment of the IR spectra of 9 mG isolated in an argon matrix: (black) the spectrum recorded before any UV-irradiation; (red) the spectrum recorded after 35 minutes of UV-irradiations at $\lambda=288$ and 285 nm . The higher- and lower-frequency bands are spectral indications of formation of open-ring isocyanates and ketenes, respectively. The lowerfrequency band may also include the contribution of carbon monoxide generated in photodecomposition processes.

