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Supplementary results

Figure 1: AFM images of PI3K-SH3 and glucagon fibrils, before and after sonication. See ex-
perimental methods section in main manuscript for details on the sonication and AFM imaging
protocols.

Figure 2: Intrinsic fluorescence spectra of PI3K-SH3 (left) and glucagon (right) at various denaturant
concentrations. The fluorescence intensity ratios at the indicated wavelengths were analysed.
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Figure 3: Quantification of soluble protein in supernatant before and after fibrillation, using ab-
sorbance spectroscopy. Left: PI3K-SH3; Right: glucagon. The errorbars represent the standard
deviation on a sample size of n = 3. Details on the protocol of centrifugation can be found in
the experimental methods section in the main manuscript. It can be seen from these results that
the fibril formation reaction is near-complete and that the protein concentration in the supernatant
is too low to be reliably measurable, illustrating the need to destabilise the fibrils with chemical
denaturants.

Figure 4: Comparison of urea and GndHCl depolymerization of SH3 fibrils and monomer at a total
protein concentration of 50µm. Left panel: amyloid fibrils; Right panel: monomers.
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Figure 5: Time course of the fluorescence signal (expressed as intensity ratios at two wavelengths) of
fibril samples with different urea molarities in order to monitor the time required for equilibration.
Left: PI3K-SH3; Right: glucagon.

Figure 6: Direct comparison between absorbance (after centrifugation) and intrinsic fluorescence
(intensity ratio 340/320 nm) data of urea depolymerization of glucagon amyloid fibrils. The errorbars
represent the standard deviation on a sample size of n = 3.
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Figure 7: The degree of aggregation as a function of the total protein concentration for a given denat-
urant concentration. Data obtained from intrinsic fluorescence and direct quantification of soluble
protein from supernatant absorbance are compared. In the fluorescence measurements the intensity
ratios at 340/310 nm (PI3K-SH3) and 340/320 nm (glucagon) are monitored. Left panel: PI3K-SH3
amyloid fibrils equilibrated in 4 M Urea. Right panel: glucagon amyloid fibrils equilibrated in 3 M
Urea.

Figure 8: This is the same data set of chemical depolymerisation of PI3K-SH3 (left) and glucagon
(right) as shown in Figures 1 and 2 of the main manuscript, but without normalising by the total
protein concentration.
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Figure 9: Mass spectra of PI3K-SH3 to probe carbamydation. PI3K-SH3 monomers were incubated
for 9 days at room temperature in both buffer, 10 mM Glycine HCl pH 2 (top), and 6M Urea in
buffer (bottom), at a final concentration of 100 µM. Afterwards, the sample containing urea was
extensively dialysed against buffer to remove the urea. Both samples were then analysed by ESI-
MS to check for possible carbamylation of the basic moieties of the protein. A small amount of
fragmented protein (at position 39, peaks at 5178 Da and 4479 Da) is present in both samples and
likely stems from the production.
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Models for data analysis

Within the theoretical framework of the linear polymerization model we can describe the thermo-
dynamics of formation of a linear polymer, such as an amyloid fibril, as a series of equilibria:
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(1)

Each of these reactions is defined by an equilibrium constant which is defined as:

Ki = ki/k−i =
[Mi]

[Mi−1][M]
(2)

Every Ki is then related to a free energy change, ∆Gi
0, by the relation:

ΔG0
i =−RTln Ki (3)

The description of any real supra-molecular polymer system can then be based on this series of
reactions by assuming certain relations between the different equilibrium constants, as will be shown
in the following.

Isodesmic model

In the simplest form of the linear polymerization model, the so-called isodesmic model, it is assumed
that the equilibrium constants Ki are equal for all the interactions. This means that the dimerization
reaction will be associated with the same change in free energy as the interaction between a monomer
and a polymer of length i. This simplicity allows to obtain an analytical solution that relates the
monomer concentration at equilibrium to the total concentration of in the following way:

Ke[M] = 1 +
1

2 Ke[M]tot
−

√
1

Ke[M]tot
+

1

4(Ke[M]tot)2
(4)
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Fit m [KJ mol-2] as:

Local Global

-64.7 9.5 -70.0 20 µM

Fit ∆G0 Local
-71.1 10.8 -67.7

10.1
60 µM

[KJ mol-1] as: 10.0 20 µM
Global -66.8

9.9
-66.5 9.9

60 µM

Table 1: Parameters obtained from fits of the PI3K-SH3 amyloid fibril depolymerisation by using
the isodesmic model. The table summarises the results from all combinations of global and local fits
of the parameters ΔG0and m.

where Ke is the equilibrium constant that defines all the interactions between monomers and
the other species in solutions, and [M]tot is the total concentration of the sample. This equation
therefore describes the evolution of the concentration of monomeric protein, [M], as a function of
total concentration. It is clear from this expression that the monomer concentration in an isodesmic
system only asymtotically approaches a constant value, the so-called critical concentration.

In fibril depolymerization experiments where the concentration of denaturant, [D], is varied at
constant [M]tot, Ke([D]), is the independent variable. The two following relations can therefore be
defined, in direct analogy to the linear free energy relationships in protein folding1:

Ke([D]) = exp

(
−ΔG([D])

RT

)
(5)

ΔG([D]) =ΔG0
Buff + m[D] (6)

where ∆G0
Buff is the free energy in the absence of denaturant. By introducing these terms in the

equation 4, we can describe the depolymerisation curve as a function of the denaturant concentration
as follows:

fs−−
[M]

[M]tot

−−
2 [M]totexp

(
−ΔG+m[D]

RT

)
+ 1−

√
4[M]tot exp

(
−ΔG+m[D]

RT

)
+ 1

2 [M]2tot exp
(
−ΔG+m[D]

RT

)
2

(7)

The dependence of the depolymerization profile on the total concentration allows to test the
applicability of this theoretical framework to the system under study by globally fitting data at
different protein concentrations, [M]tot. In addition to testing the model, this procedure that we
have employed in the present study, allows also to extract more robust thermodynamic parameters.
Tables 1 and 2 below summarise the results of the possible combinations of glocal and local fits of
the data shown in Figure 1 and 2 of the main manuscript.

Experimental data of amyloid fibril depolymerization by chemical denaturants has so far only
been analyzed in the framework of this simplest model2–4. In the present study, however, we find that
the isodesmic model is not able to quantitatively describe the ensemble of depolymerization curves
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Fit m [KJ mol-2] as:

Local Global

-36.7 6.0 -35.7 25 µM

-38.8 6.3 -37.2 85 µM

Fit ∆G0
Local

-42.2 6.9 -38.2
5.7

195 µM

[KJ mol-1] as: 6.1 25 µM

5.7 85 µMGlobal -36.9
6.3

-36.7 5.5
195 µM

Table 2: Parameters obtained from fits of the glucagon amyloid fibril depolymerisation by using the
isodesmic model. The table summarises the results from all combinations of global and local fits of
the parameters ΔG0and m.

at different protein concentrations. Furthermore, from a conceptual point of view, the isodesmic
model is not a good description of a nucleated polymerization. Several simple extensions of the
isodesmic model have therefore been introduced, all based on the idea that the equilibrium constant
is size-dependent.

Helical and cooperative polymerization models

In their studies of actin, Oosawa and co-workers noticed that the polymerization behaviour of this
protein was not compatible with the isodesmic model and as a consequence introduced the helical
polymerization model5,6. In this model, a transition between the linear form of a trimer and a
helical form is energetically unfavourable, due to elastic energy of deformation, but the addition of
a monomer to the helical form is energetically more favorable than addition to the linear form, due
to the larger number of inter-molecular contacts. The relevant equilibrium concentrations can be
described as follows:

[M3h] = γ[M3] = γK−1(K[M])3

[M4h] = Kh [M3h] [M] = γK−1K3 Kh [M]4

....

[Mih] = Kh [M(i−1)h] [M] = γ(K/Kh)2 Kh
−1 (Kh [M])i = σKh

−1 (Kh [M])i

(8)

where σ = γ(K/Kh)2, with K the equilibrium constant of addition to a linear polymer, Kh the
equilibrium constant for addition to a helical polymer and γ < 1 the unfavorable Boltzmann factor
for mechanical deformation of the linear into a helical polymer. Usually, σ � 1 and therefore the
system displays nucleation behaviour. It can be shown6 that the total protein concentration in such
a helically polymerizing system can be written as

[M ]tot =
[M ]

(1−K[M ])2
+

σ[M ]

(1−Kh[M ])2
− σ[M ]− 2σKh[M ] (9)

which, for σ � 1 and K < Kh can be simplified to
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[M ]tot = [M ] +
σ[M ]

(1−Kh[M ])2
(10)

which predicts a well-defined critical concentration [Mc] = K−1
h . The helical polymerization

model in this form is elegant and well adapted to account for the specific structural features of actin
filaments. It is, however, not the simplest extension of the isodesmic model. We chose to analyze our
data on the chemical depolymerization of amyloid fibrils with an even simpler, and somewhat more
general model, the so-called cooperative linear polymerization model7,8. This model introduces the
assumption of a minimal unit of the polymer, called nucleus, the energetics of formation of which
differs from that of elongation according to the following relation:

Kn = σKe (11)

Note that the definition of σ is different than in the helical model. In this model, all reactions
between a monomer and species up to n-mers (where n is the nucleus size) are described by the
equilibrium constant Kn, while the interactions between monomers and species with a higher number
of monomers than n follow the equilibrium dictated by the constant Ke. A detailed description of
this model can be found in the review from Zhao and Moore7. Here we limit ourselves to a discussion
of its application to analyze data of amyloid fibril thermodynamics.

Introducing the dimensionless concentrations xtot=Ke[M] tot and x=Ke[M], the relation between
the two is described by the following equation formulated by Korevaar et al.9:

xtot = σ−1

(
(σx)n+1(nσx−n−1)

(σx−1) 2
+ σx

(σx−1) 2

)
−σn−1

(
xn+1(nx−n−1)

(x-1) 2

)
(12)

This equation is solved numerically through the use of the least square module of the scipy.optimize
python library. In order to fit experimental data from a concentration series (see e.g. Figure 3 of
the main manuscript), the solution of this equation for multiple xtot is fitted using [M]tot as the
independent variable and Ke as an open parameter (using the relation xtot=Ke[M]tot).

The fitting procedure for a depolymerization experiment, whereby the denaturant concentration
is varied requires instead a different approach. The independent variable is [D], while [M]tot is kept
constant and Ke is described in terms of Ke([D]) = exp (–(∆G0

Buff + m[D])/(RT)) with ΔG0
Buff,

m and σ as fitting parameters, whereas n is kept constant for each given run.
Tables 3 and 4 below show the results of a systematic variation of the parameter n. We have per-
formed fits for two types of models, which we call osaa and osam. The former (osaa, oligomers same
as aggregates) corresponds to the scenario whereby the oligomers up to size n have the same fluores-
cence properties as the larger aggregates, whereas the latter (osam, oligomers same as monomers)
corresponds to the scenario whereby all species up to size n have the same fluorescence properties
as the monomer. It can be seen that the cooperative model, for all choices of n, provides a much
better description of the concentration dependent depolymerization experiments than the isodesmic
model. The fit parameters and fit quality are relatively insensitive to the exact choice of n, how-
ever, for both proteins the best results are achieved for small values of n of approximately 4-5. We
have used n = 5 for the analysis of the influence of changes in salt concentration on the stability
of the aggregates, see below. Regarding the choice of model (osam vs. osaa), we conclude that the
osaa is not only structurally more plausible (due to the disordered nature of the monomers of both
PI3K-SH310 and glucagon11 under these conditions, it can be expected that the monomer will have
a distinct spectroscopic signature from any oligomeric species, which are likely to be more compact,
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with solvent-protected Trp), but also yields lower values for σ. Smaller σ values correspond to a
more distinct thermodynamic stability of small (<n) vs. large (>n) species, which we think is more
plausible than σ value closer to unity.
We would like to stress here that n should not be regarded as a critical nucleus size. The values for
ΔG0and σ we obtain from our fits suggest that also species below the size n are thermodynamically
favourable (negative free energy of monomer attachment), albeit less so compared to monomer at-
tachment to a species larger than n. In the framework of classical nucleation theory, the nucleus is
considered a thermodynamically unstable species, i.e. the free energy of addition of a monomer to a
species smaller than n is positive12. Our results suggest that the formation of small oligomeric species
from amyloid proteins is thermodynamically favourable. However, it is still possible to explain the
slow nucleation of amyloid fibrils, namely through the assumption of high free energy barriers for
nucleation, as has been observed for example for the amyloid β-peptide13. When starting an aggre-
gation experiment with freshly prepared monomeric protein, the establishment of the equilibrium
distribution of small oligomers depends on the energy barriers rather than the thermodynamics of
oligomer formation.

ΔG0[KJ/mol] m [KJ/mol2] σ R2

n signal

isodesmic -66.9 10 NaN 99.6
1 osaa -67.9 10 NaN 99.6

osam -67.1 9.3 NaN 99.7
2 osaa -59.2 7.6 0.110 99.8

osam -60.3 7.8 0.229 99.8
3 osaa -58.5 7.3 0.139 99.8

osam -62.0 7.8 0.506 99.8
4 osaa -57.7 7.1 0.132 99.8

osam -63.3 7.8 0.640 99.8
5 osaa -57.1 6.9 0.121 99.8

osam -64.3 7.9 0.715 99.8
8 osaa -57.0 6.8 0.113 99.8

osam -66.3 7.9 0.821 99.7
10 osaa -56.9 6.8 0.113 99.8

osam -67.3 7.9 0.860 99.7
20 osaa -63.9 8.6 0.285 99.6

osam -70.5 7.8 0.930 99.7
40 osaa -63.9 8.6 0.285 99.6

osam -73.7 7.8 0.962 99.7

Table 3: Fitting parameters ΔG0, m and σ from a systematic variation of n, in the framework of
the two models osaa and osam (see text for details) for PI3K-SH3.
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ΔG0[KJ/mol] m [KJ/mol2] σ R2

n signal

isodesmic -36.7 5.5 NaN 98.6
1 osaa -37.4 5.7 NaN 98.6

osam -37.4 5.3 NaN 99.0
2 osaa -36.0 4.2 0.030 99.8

osam -36.2 4.2 0.041 99.8
3 osaa -36.2 4.1 0.084 99.8

osam -37.0 4.2 0.212 99.8
4 osaa -36.2 4.1 0.097 99.8

osam -37.9 4.2 0.350 99.8
5 osaa -36.3 4.1 0.102 99.7

osam -38.7 4.2 0.44 99.8
8 osaa -36.5 4.2 0.115 99.7

osam -40.4 4.2 0.620 99.8
10 osaa -36.5 4.2 0.115 99.7

osam -41.3 4.2 0.682 99.8
20 osaa -36.5 4.2 0.115 99.7

osam -44.4 4.2 0.833 99.8
40 osaa -36.5 4.2 0.115 99.7

osam -47.6 4.2 0.910 99.8

Table 4: Fitting parameters ΔG0, m and σ from a systematic variation of n, in the framework of
the two models osaa and osam (see text for details) for glucagon.
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Electrostatic contribution to amyloid fibril stability

The basic assumption of the approach we present here is that the dependence of the rates and
equilibria of molecular processes in aqueous solution on the salt concentration (or, more precisely,
on the ionic strength) of the solution informs about the importance of electrostatic interactions in
these processes and states. Conceptually, this approach is rooted in the work of Debye and Hückel,
who presented a theory of electrostatic interactions in dilute salt solutions14. Here we follow and
extend a treatment that we have presented previously in the context of the ionic strength dependence
of amyloid fibril elongation rates15. The rate of amyloid fibril growth, R, can be written as R =
ke[M][P], where ke is the rate constant of elongation, [M] the monomer concentration and [P] the
concentration of fibril ends. We have discussed previously15,16 that ke can be written as ke =

Γe−
∆G‡
RT , whereby Γ is a diffusive pre-factor and ∆G‡ is the free energy barrier for fibril elongation.

An important point to mention here is while the process of incorporation of a monomer into a
fibril end can involve the sequential crossing of multiple barriers, it is the highest barrier only that
determines the kinetics16,17. This free energy barrier can be split into a non-electrostatic part
(∆G‡ne, breakage of H-bonds and other non-covalent interactions, hydrophobic effect, etc.18) and an
electrostatic part (∆G‡e). We postulate that the electrostatic contribution to ∆G‡ can be written as
a screened Coulomb potential15,19:

∆G‡ = ∆G‡ne + ∆G‡e = ∆G‡ne +
NAzMzF e

2

4πε0εrr‡
e−κr

‡
(13)

where free energies are given in J/mol. Here, zM and zF denote the effective charges of the
monomer and the fibril end, respectively, that lead to the electrostatic repulsion in the transition

state. κ =
√

2000e2INA

ε0εrkBT
is the inverse Debye length and r‡ corresponds to the average centre of mass

distance between the monomer and the fibril end in the transition state ensemble15,16,18. For κr‡ <
1, we can linearize this expression, by using e−x ≈ 1− x for small x:

∆G‡ = ∆G‡ne +
NAzMzF e

2

4πε0εrr‡
− NAzMzF e

2κ

4πε0εr
(14)

In this expression, only κ depends explicitly on the ionic strength; therefore, if we derive the
logarithm of the fibril elongation rate with respect to the square root of the ionic strength, we obtain:

d logR

d
√
I

=
NAzMzF e

2

4πε0εrRT

dκ

d
√
I

=
NAzMzF e

2

4πε0εrRT

√
2000e2NA
ε0εrkBT

= AzMzF (15)

We see, therefore, that the slope of a plot of the logarithm of the fibril elongation rate against
the square root of the ionic strength is proportional to the product of the effective charges on
the monomer and fibril end that are relevant for the interaction in the transition state of fibril
elongation15.
We next focus on the equilibrium constant for fibril elongation, which is related to the free energy
change associated with the addition of one mole of monomer to fibril ends according to equation
(3), ∆G0 = −RT lnKe. Again, we can divide ∆G0 into a non-electrostatic contribution and an
electrostatic contribution:

∆G0 = ∆G0
ne + ∆G0

e = ∆G0
ne +

NAz
′
Mz
′
F e

2

4πε0εrreq
e−κr

eq

(16)

This expression is analogous to equation 13, except for the substitution of the ‡ (’double dagger’)
superscript (notation for transition state quantities) by the superscript ’eq’. Here, req denotes the
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Ionic strength [
√
M ] ΔG0[KJ/mol] ΔG0[KJ/mol]

m glob. fit m fixed

0.17 -35.2 -36.8
0.22 -37.3 -39.1
0.28 -38.2 -40.6
0.32 -39.5 -42.3
0.36 -40.1 -42.9

Table 5: Glucagon amyloid fibril stabilities as a function of salt concentration. In the first column,
sigma is kept constant at 0.064, n is kept constant at 5 and m is globally fitted among the whole
dataset. In the second column, m is also fixed as well at 4400 KJ/mol, the value determined
previously from the fit of the data set in the absence of salt.

Ionic strength [
√
M ] ΔG0[KJ/mol] ΔG0[KJ/mol]

m glob. fit m fixed

0.17 -52.0 -56.0
0.18 -54.2 -59.0
0.19 -55.1 -59.9
0.22 -56.3 -61.2

Table 6: PI3K-SH3 amyloid fibril stabilities as a function of salt concentration. In the first column,
sigma is kept constant at 0.121, n is kept constant at 5 and m is globally fitted among the whole
dataset. In the second column, m is also fixed as well at 6900 KJ/mol, the value determined
previously from the fit of the data set in the absence of salt.

center of mass distance of the last incorporated monomer from the previous fibril end, i.e. the center
of mass of the second to last incorporated monomer. The effective charges have been primed in
order to express the idea that the effective charges acting in the transition state ensemble and in
the final state can be different. A rearrangement of this expression analogous to the one outlined
for the kinetic expression above leads to:

d logKe

d
√
I

=
NAz

′
Mz
′
F e

2

4πε0εrRT

dκ

d
√
I

=
NAz

′
Mz
′
F e

2

4πε0εrRT

√
2000e2NA
ε0εrkBT

= Az′Mz
′
F (17)

Our experimental data for PI3K-SH3 and glucagon (Figure 4 in the main manuscript, individual
values of ΔG0can be found in tables 5 and 6 below) show that the slope is larger for PI3K-SH3,
suggesting a higher effective charge that destabilizes the fibrils. This is consistent with the higher
formal charge of PI3K-SH3 at this acidic pH, based on the amino acid sequence. In our analysis,
we explored two different ways to fit the ionic strength dependence data, by keeping m fixed to the
values determined previously and by fitting m globally to the ionic strength-dependent data set (see
two columns in tables 5 and 6). We found that the general conclusions drawn here are independent
of the exact manner in which the denaturation curves are fitted, and we show the results of the
method with fixed m-value in the plots in the main manuscript.

We next proceed to relate the ionic strength dependencies of both kinetics and thermodynamics
of fibril elongation. Our analysis above shows that the slopes for the kinetic and thermodynamic
ionic strength dependencies are both independent of the characteristic distances, r‡ and req, and
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have the same numerical pre-factor, A = NAe
2

4πε0εrRT

√
2000e2NA

ε0εrkBT
. Therefore, in order to eliminate the

numerical constant A, we can express the ratio of the slopes as:

d logR

d
√
I

/
d logKe

d
√
I

=
zMzF
z′Mz

′
F

(18)

We next perform a close analysis of the behavior of PI3K-SH3 for which both the dependence
of the kinetics15 and thermodynamics (this work) on solution ionic strength has been determined.
We find that the slopes and therefore products of the effective charges are extremely similar in
both the transition state and the final state (Figure 5 a of the main manuscript). This finding
provides strong evidence for the fact that the transition state ensemble of fibril elongation, at least
in this protein system, is highly product-like, regarding the center of mass distance component of
the multi-dimensional reaction coordinate16. It is likely that under these conditions of high net
charge, the electrostatic interactions are dominated by the center of mass distance between the
newly incorporating monomer and the monomer that corresponds to the fibril end, rather than by
the internal degrees of freedom. Therefore, no information on the similarity of the internal structures
between transition state ensemble and final state can be obtained from our analysis.
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