Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supplementary Information

Designing rare earth free permanent magnets: Insights from small Co clusters

Arpita Sen and Prasenjit Sen Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad 211019, India. TABLE I: Spin moment (μ_B) , point group (PG) symmetry, and MAE's (K) calculated by two different methods of Co₄A₂ clusters. Clusters are identified by their relative energies (see Figure 2 in main text). Non-SC means charge density was kept constant while spin-orbit coupling is included. MAE SC means, charge density is varied to achieve self-consistency.

Relative energy	M_s	PG symmetry	MAE (Non SC)	MAE (SC)
$\mathbf{Co}_4\mathbf{C}_2$				
0.0	4	\mathbf{C}_{s}	24.64	24.10
0.220	4	\mathbf{C}_{s}	12.13	13.25
0.230	2	\mathbf{C}_{s}	28.41	25.32
0.243	4	C_2	28.08	26.94
0.448	0	\mathbf{C}_{s}	48.34	
$\mathbf{Co}_4\mathbf{Si}_2$				
0.0	6	D_{2h}	49.92	48.71
0.106	6	D_{4h}	35.12	34.55
0.439	4	D_{4h}	42.25	41.31
Co_4Ge_2				
0.0	6	D_{4h}	33.87	34.08
0.354	6	\mathbf{C}_{s}	69.41	66.89
0.472	6	C_{2v}	62.58	61.84
$\mathbf{Co}_4\mathbf{N}_2$				
0.0	8	C_s	28.18	27.61
0.139	6	C_{2v}	48.62	
0.248	8	\mathbf{C}_{s}	51.92	54.38
0.280	8	\mathbf{C}_{s}	31.11	
0.404	8	C_{2v}	17.37	16.81
0.449	6	C_{2v}	60.67	56.51
Co_4P_2				
0.0	6	C_{2v}	35.12	31.84
0.041	8	C_{2v}	5.57	
0.082	6	C_1	26.13	24.96
0.110	6	D_{4h}	19.41	21.05
0.198	8	\mathbf{C}_{s}	44.47	39.71
0.450	0	C_{2v}	17.50	16.87
0.459	4	C_s	29.14	30.97
$\mathbf{Co}_4\mathbf{As}_2$				
0.0	8	D_{4h}	50.14	41.80
0.034	8	C_{2v}	16.28	13.53
0.142	6	C_{2v}	39.32	
0.244	8	\mathbf{C}_{s}	70.36	75.34
0.485	2	\mathbf{C}_{s}	38.59	33.42
				-