Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

SUPPLEMENTARY INFORMATION

for

From Benzene to Naphthalene, Direct Measurement of Reactions and Intermediates of Phenyl Radical and Acetylene

Te-Chun Chu, Zachary J. Buras, Mica Smith, Awele B. Uwagwu, William H. Green*

Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge, MA 02139 United States of America

E-mail: whgreen@mit.edu

Table of Contents

1.	Summary of molecular parameters for newly calculated stationary points on the $C_8 H_7$
pot	ential energy surface, G3(MP2,CC)//B3LYP/6-311G**
2.	k _{sampling} fitted from NO signals8
3.	Modeling approach applied in this work9
4.	Time-dependent signals of products from the vinyl + C_2H_2 reaction observed in MBMS
exp	eriments10
5.	MBMS experiments at high C_2H_2 concentration (Exp. 5, 6, 7, 8)11
6.	Uncertainty analysis for the product branching measurement13

1. Summary of molecular parameters for newly calculated stationary points on the C_8H_7 potential energy surface, G3(MP2,CC)//B3LYP/6-311G**

bicyclo[4.2.0]octa-3,5,7-trien-2-yl, C₈H₇-3

Geometry:

С	-1.8158370000	-0.7212840000	-0.0250110000
С	-1.7868480000	0.7020780000	-0.1868740000
С	-0.6279540000	-1.4589720000	0.0797550000
С	0.5377980000	-0.7484280000	0.2231210000
С	0.5739800000	0.7579140000	0.4420140000
С	-0.6484060000	1.4389790000	-0.0777380000
С	1.9145970000	-0.7316500000	-0.2079910000
С	1.9751100000	0.6275040000	-0.1950530000
Н	0.6948710000	1.0147490000	1.5047510000
Н	-2.7622870000	-1.2358110000	-0.1200990000
Н	-0.6330610000	-2.5312660000	-0.0755710000
Н	-2.7183540000	1.1993590000	-0.4297250000
Н	-0.6625950000	2.5108120000	-0.2323550000
Н	2.6174820000	-1.5038850000	-0.4869620000
н	2.7293190000	1.3491960000	-0.4733800000

Energy (Hartree):

```
ZPE(B3LYP/6-311G<sup>**</sup>) = 0.1191, E(CCSD(T)/6-311G<sup>**</sup>) = -308.1485, E(MP2/6-311G<sup>**</sup>) = -308.0055, E(MP2/G3large) = -308.1850, E(G3(MP2,CC)) = -308.2129
```

Frequency (cm-1): 186, 238, 385, 416, 517, 539, 603, 670, 704, 760, 774, 865, 883, 895, 925, 956, 976, 981, 1034, 1086, 1101, 1127, 1170, 1201, 1280, 1293, 1328, 1363, 1423, 1487, 1543, 1589, 2942, 3145, 3152, 3165, 3183, 3184, 3211

Rotational constant (GHz) = 1.5549, 2.2536, 4.3660; external symmetry: 1, optical isomer: 2

bicyclo[4.2.0]octa-1,3,5-trien-7-yl, C₈H₇-4

Geometry:

С	-1.8880650000	0.6408890000	0.0000000000
С	-1.8286760000	-0.7590710000	-0.0000010000
С	-0.7432890000	1.4337300000	0.0000010000
С	0.4774060000	0.7451260000	0.0000020000
С	0.5254010000	-0.6724940000	0.0000030000
С	-0.6004250000	-1.4509010000	-0.0000010000
С	1.8891530000	0.8560540000	-0.0000060000

С	2.0587340000	-0.6696190000	0.0000020000
Н	-2.8605310000	1.1164490000	0.0000000000
Н	-0.8100590000	2.5134180000	0.0000030000
Н	-2.7535740000	-1.3205650000	-0.0000030000
Н	-0.5751770000	-2.5330450000	-0.0000020000
Н	2.5323160000	-1.0962370000	0.8874650000
Н	2.5323190000	-1.0962430000	-0.8874580000
Н	2.5932800000	1.6739290000	0.0000020000

Energy (Hartree):

ZPE(B3LYP/6-311G**) = 0.1202, E(CCSD(T)/6-311G**) = -308.1829, E(MP2/6-311G**) = -308.0473, E(MP2/G3large) = -308.2284, E(G3(MP2,CC)) = -308.2478

Frequency (cm-1): 214, 233, 391, 428, 502, 542, 550, 647, 701, 757, 796, 867, 888, 924, 936, 977, 991, 1009, 1094, 1096, 1126, 1165, 1192, 1209, 1242, 1321, 1380, 1445, 1475, 1493, 1575, 1629, 3021, 3054, 3156, 3165, 3177, 3184, 3211

Rotational constant (GHz) = 1.4895, 2.1804, 4.5655; external symmetry: 1, optical isomer: 1

benzocyclobutadiene, C₈H₆-2

Geometry:

С	-1.8395960000	-0.6863580000	-0.0000020000
С	-1.8395960000	0.6863580000	0.0000020000
С	-0.6215600000	-1.4397270000	0.0000000000
С	0.5205560000	-0.7093920000	0.0000070000
С	0.5205560000	0.7093920000	0.0000050000
С	-0.6215600000	1.4397270000	-0.0000020000
С	2.0416750000	-0.6731560000	-0.0000020000
С	2.0416750000	0.6731560000	-0.0000010000
Н	-2.7823760000	-1.2171870000	-0.0000060000
Н	-0.6428290000	-2.5213200000	-0.0000050000
Н	-2.7823760000	1.2171870000	0.0000010000
Н	-0.6428290000	2.5213200000	-0.0000060000
Н	2.8187560000	-1.4218830000	-0.0000060000
Н	2.8187560000	1.4218830000	-0.0000060000

Energy (Hartree):

ZPE(B3LYP/6-311G^{**}) = 0.1099, E(CCSD(T)/6-311G^{**}) = -307.5802, E(MP2/6-311G^{**}) = -307.4836, E(MP2/G3large) = -307.6659, E(G3(MP2,CC)) = -307.6562

Frequency (cm-1): 228, 297, 363, 419, 549, 584, 656, 720, 754, 774, 815, 872, 888, 932, 932, 974, 988, 1050, 1071, 1093, 1098, 1190, 1261, 1310, 1441, 1459, 1487, 1567, 1642, 1691, 3159, 3171, 3178, 3187, 3204, 3233

Rotational constant (GHz) = 1.5160, 2.2023, 4.8650; external symmetry: 2, optical isomer: 1

TS_C₈H₇-1_C₈H₇-3

Geometry:

С	0.3925420000	-0.8768790000	0.4296970000
С	0.5711770000	0.5684310000	0.3319200000
С	-0.4941660000	1.4154270000	0.1003750000
С	-1.7528780000	0.8599910000	-0.1445640000
С	-1.9163400000	-0.5356800000	-0.2208910000
С	-0.8803170000	-1.4044980000	0.0563900000
С	1.9769890000	0.6497700000	-0.0130920000
С	2.1571450000	-0.5916440000	-0.4743800000
Н	0.9376780000	-1.4062440000	1.2017110000
Н	-2.8947730000	-0.9346890000	-0.4570380000
Н	-1.0542730000	-2.4724580000	0.0732850000
Н	2.6586600000	1.4899870000	0.0376490000
Н	2.9623350000	-1.1736580000	-0.9046820000
Н	-2.5978770000	1.5057480000	-0.3415870000
Н	-0.3366690000	2.4818080000	-0.0020680000

Energy (Hartree):

ZPE(B3LYP/6-311G^{**}) = 0.1175, E(CCSD(T)/6-311G^{**}) = -308.1186, E(MP2/6-311G^{**}) = -307.9612, E(MP2/G3large) = -308.1416, E(G3(MP2,CC)) = -308.1853

Frequency (cm-1): 617i, 190, 284, 414, 423, 553, 579, 607, 651, 737, 744, 793, 821, 844, 899, 935, 938, 982, 990, 1019, 1095, 1134, 1168, 1184, 1262, 1302, 1340, 1439, 1466, 1528, 1547, 1591, 3128, 3150, 3154, 3161, 3174, 3184, 3185

Rotational constant (GHz) = 1.4927, 2.0640, 4.4567; external symmetry: 1, optical isomer: 1

$TS_C_8H_7\text{-}2_C_8H_7\text{-}4$

Geometry:

С	1.8683070000	0.7766240000	0.0722810000
С	0.6233950000	1.3946710000	0.0644340000
С	1.9950480000	-0.6152370000	-0.0019080000
С	-0.5064110000	0.5739560000	-0.0302260000
С	-0.3479650000	-0.8130780000	-0.1196970000
С	0.8707400000	-1.4487140000	-0.0938350000
С	-1.9291040000	0.7163320000	-0.1332650000
С	-2.4454790000	-0.5548170000	0.1880380000
Н	2.9834480000	-1.0581480000	0.0037400000
Н	0.9802410000	-2.5233810000	-0.1524640000
Н	-2.4691020000	1.4910780000	-0.6606520000
Н	-2.2198370000	-1.0017640000	1.1457230000
Н	-3.3491150000	-0.9392610000	-0.2789200000
Н	2.7635130000	1.3809720000	0.1387020000
н	0.5396640000	2.4720820000	0.1289390000

Energy (Hartree):

ZPE(B3LYP/6-311G^{**}) = 0.1181, E(CCSD(T)/6-311G^{**}) = -308.1203, E(MP2/6-311G^{**}) = -307.9602, E(MP2/G3large) = -308.1403, E(G3(MP2,CC)) = -308.1861

Frequency (cm-1): 722i, 159, 266, 399, 413, 514, 570, 609, 657, 698, 759, 770, 837, 872, 939, 951, 979, 998, 1001, 1021, 1123, 1171, 1184, 1246, 1262, 1324, 1384, 1445, 1479, 1510, 1574, 1601, 3097, 3151, 3163, 3174, 3176, 3181, 3188

Rotational constant (GHz) = 1.3789, 1.8883, 4.8251; external symmetry: 1, optical isomer: 1

TS_C₈H₇-3_C₈H₇-4

Geometry:

С	-1.8233810000	0.7150830000	0.0329660000
С	-0.6836930000	1.4708840000	0.0459600000
С	-1.8028650000	-0.7301540000	-0.0681810000
С	0.5433540000	0.7637130000	-0.0158300000
С	0.5481540000	-0.7286710000	0.1105500000
С	-0.6539260000	-1.4736790000	-0.0641560000
С	1.9161410000	0.8036110000	-0.1407670000
С	2.0001500000	-0.6716520000	-0.0162750000
Н	-2.7544100000	-1.2364440000	-0.1690010000
Н	-0.6730630000	-2.5515440000	-0.1523280000
Н	2.6648560000	1.5782710000	-0.1042950000
Н	2.7375640000	-1.4399170000	-0.1906930000
Н	1.2785480000	-0.9979850000	1.1859520000
Н	-0.7275910000	2.5521640000	0.0607770000
Н	-2.7895030000	1.2006470000	0.0639850000

Energy (Hartree):

ZPE(B3LYP/6-311G**) = 0.1148, E(CCSD(T)/6-311G**) = -308.0693, E(MP2/6-311G**) = -307.9312, E(MP2/G3large) = -308.1156, E(G3(MP2,CC)) = -308.1427

Frequency (cm-1): 2975i, 226, 274, 406, 437, 531, 556, 616, 686, 702, 754, 789, 806, 850, 892, 948, 952, 958, 976, 1100, 1147, 1158, 1169, 1213, 1240, 1259, 1355, 1413, 1472, 1499, 1577, 1592, 1719, 3157, 3165, 3178, 3186, 3209, 3227

Rotational constant (GHz) = 1.5108, 2.2586, 4.4006; external symmetry: 1, optical isomer: 1

TS_C₈H₇-3_C₈H₆-2+H

Geometry:

С	-0.6323470000	-1.4233710000	-0.0996440000
С	0.5178290000	-0.6926390000	0.0316450000
С	0.5081740000	0.7332180000	0.0416190000
С	-0.6409960000	1.4538610000	0.0353740000
С	-1.8520250000	0.6942120000	0.0018240000
С	-1.8460500000	-0.6805110000	-0.0774840000
С	2.0361040000	-0.6311660000	-0.1021330000

С	2.0155390000	0.7147760000	-0.0764310000
Н	0.6666720000	-1.1516180000	2.0351260000
Н	-2.7866980000	-1.2129510000	-0.1211160000
Н	-0.6438330000	-2.5018390000	-0.1792260000
Н	2.7791020000	1.4752410000	-0.1287120000
Н	2.8150180000	-1.3729560000	-0.1819640000
Н	-2.7982010000	1.2186380000	0.0193790000
Н	-0.6694350000	2.5352100000	0.0278970000

Energy (Hartree):

ZPE(B3LYP/6-311G^{**}) = 0.1111, E(CCSD(T)/6-311G^{**}) = -308.0742, E(MP2/6-311G^{**}) = -307.9184, E(MP2/G3large) = -308.1005, E(G3(MP2,CC)) = -308.1489

Frequency (cm-1): 517i, 226, 274, 406, 437, 531, 556, 616, 686, 702, 754, 789, 806, 850, 892, 948, 952, 958, 976, 1100, 1147, 1158, 1169, 1213, 1240, 1259, 1355, 1413, 1472, 1499, 1577, 1592, 1719, 3157, 3165, 3178, 3186, 3209, 3227

Rotational constant (GHz) = 1.5097, 2.1592, 4.5943; external symmetry: 1, optical isomer: 1

TS_C₈H₇-4_C₈H₆-2+H

Geometry (optimized at M06-2X/cc-pVTZ):

С	-0.6070910000	-1.4383600000	-0.0757690000
С	-1.8469610000	-0.7309100000	-0.0054550000
С	-1.8968080000	0.6362250000	0.0516740000
С	-0.7126740000	1.4340100000	0.0436360000
С	0.4533970000	0.7477440000	-0.0221950000
С	0.5028210000	-0.6661940000	-0.0809970000
С	1.9624340000	0.7742850000	-0.0760710000
С	2.0212130000	-0.5733970000	-0.1194390000
Н	-2.7698240000	-1.2945850000	0.0043050000
Н	-0.5876010000	-2.5182620000	-0.1188530000
Н	2.7072390000	1.5545900000	-0.0820910000
Н	2.2010110000	-1.1987740000	1.9621340000
Н	2.8216140000	-1.2843710000	-0.2486090000
Н	-2.8582460000	1.1284510000	0.1046840000
Н	-0.7721660000	2.5125380000	0.0861250000

Energy (Hartree):

ZPE(B3LYP/6-311G^{**}) = 0.1113, E(CCSD(T)/6-311G^{**}) = -308.0761, E(MP2/6-311G^{**}) = -307.9240, E(MP2/G3large) = -308.1067, E(G3(MP2,CC)) = -308.1512

Frequency (cm-1): 693i, 218, 247, 309, 354, 381, 418, 549, 577, 658, 731, 755, 773, 819, 870, 884, 913, 933, 985, 990, 1052, 1069, 1098, 1103, 1193, 1262, 1312, 1428, 1464, 1469, 1521, 1650, 1701, 3165, 3178, 3186, 3193, 3210, 3237

Rotational constant (GHz) = 1.4959, 2.1326, 4.6139; external symmetry: 1, optical isomer: 1

2. k_{sampling} fitted from NO signals

Figure S1. Time-dependent signals of NO peaks (m/z=30) measured in MBMS experiments (markers) and model predictions (line), 600 K and 50 torr (Experiment 2). By using $k_{sampling} = 2000 \text{ s}^{-1}$, the model prediction successful captures the time dependence of NO signals. t=0 is the time of the photolysis flash in the reactor; there is a short time lag between the flash and the first arrival of NO⁺ at the mass spectrometer.

3. Modeling approach applied in this work

Figure S2. Overall approach to predict species concentrations and convert them into MBMS signals for comparison with experimental data.

4. Time-dependent signals of products from the vinyl + C_2H_2 reaction observed in MBMS experiments

Figure S3. Time-dependent profiles of product peaks originating from the reaction of H atom with C_2H_2 in experiment 3.

Figure S4. Leading pathways of $H + C_2H_2$ and vinyl + C_2H_2 reactions.

5. MBMS experiments at high C_2H_2 concentration (Exp. 5, 6, 7, 8)

Experiment 5 – 600 K, 10 Torr, C_2H_2 concentration 5.46 x 10^{16} molecule/cm³

Figure S5. Experiment 5: Time-dependent signals of primary product peaks measured in MBMS experiments (markers) and model predictions (line). (a) short time scale (2.0 ms) (b) long time scale (8.0 ms)

Experiment 6 – 600 K, 50 Torr, C₂H₂ concentration 5.38 x 10¹⁶ molecule/cm³

Figure S6. Experiment 6: Time-dependent signals of primary product peaks measured in MBMS experiments (markers) and model predictions (line). (a) short time scale (2.0 ms) (b) long time scale (8.0 ms)

Experiment 7 – 700 K, 10 Torr, C₂H₂ concentration 3.83 x 10¹⁶ molecule/cm³

Figure S7. Experiment 7: Time-dependent signals of primary product peaks measured in MBMS experiments (markers) and model predictions (line). (a) short time scale (2.0 ms) (b) long time scale (8.0 ms)

Experiment 8 – 700 K, 50 Torr, C₂H₂ concentration 3.77 x 10¹⁶ molecule/cm³

Figure S8. Experiment 8: Time-dependent signals of primary product peaks measured in MBMS experiments (markers) and model predictions (line). (a) short time scale (2.0 ms) (b) long time scale (8.0 ms)

6. Uncertainty analysis for the product branching measurement

The branching fraction for the H-loss pathway of the $C_6H_5 + C_2H_2$ reaction was determined using the following equations:

$$=\frac{k_3}{k_1+k_2+k_3}$$
 H-loss branching

$$= \frac{\frac{Signal_{102}}{\sigma_{phenylacetylene}} \times 0.92}{\frac{Signal_{128}}{\sigma_{naphthalene}} \times 0.90 + \frac{Signal_{102}}{\sigma_{phenylacetylene}} \times 0.92}$$

$$= \frac{Signal_{102} \times 0.92 \times \sigma_{naphthalene}}{\sigma_{phenylacetylene} \times Signal_{128} \times 0.90 + \sigma_{naphthalene} \times Signal_{102} \times 0.92}$$
$$= f(S_{102}, S_{128}, \sigma_{C8H6}, \sigma_{C10H8})$$

The uncertainty of the H-loss branching fraction $u_{H-loss\ branching}$, was determined using the following equations:

$$\begin{aligned} u_{H-loss\ branching} &= \sqrt{\left(\frac{\partial f}{\partial S_{102}}\right)^2 u_{S_{102}}^2 + \left(\frac{\partial f}{\partial S_{128}}\right)^2 u_{S_{128}}^2 + \left(\frac{\partial f}{\partial \sigma_{C8H6}}\right)^2 u_{\sigma_{C8H6}}^2 + \left(\frac{\partial f}{\partial \sigma_{C10H8}}\right)^2 u_{\sigma_{C10H8}}^2} \\ \frac{\partial f}{\partial S_{102}} &= \frac{1.0222\ S_{128}\sigma_{C8H6}\sigma_{C10H8}}{\left(1.0222\ S_{102}\sigma_{C10H8} + S_{128}\sigma_{C8H6}\right)^2} \\ \frac{\partial f}{\partial S_{128}} &= \frac{-0.9783\ S_{102}\sigma_{C8H6}\sigma_{C10H8}}{\left(0.9783\ S_{128}\sigma_{C8H6} + S_{102}\sigma_{C10H8}\right)^2} \end{aligned}$$

$$\frac{\partial f}{\partial \sigma_{C8H6}} = \frac{-0.9783 \, S_{102} S_{128} \sigma_{C10H8}}{\left(0.9783 \, S_{128} \sigma_{C8H6} + S_{102} \sigma_{C10H8}\right)^2}$$
$$\frac{\partial f}{\partial \sigma_{C10H8}} = \frac{0.9783 \, S_{102} S_{128} \sigma_{C8H6}}{\left(0.9783 \, S_{128} \sigma_{C8H6} + S_{102} \sigma_{C10H8}\right)^2}$$

 S_{102} , S_{128} = average product signals at m/z=102 and m/z=128 in the measure time scales

 σ_{C8H6} = PICS of phenylacetylene = 63.0 Mb (measured by Zhou et al.¹)

 σ_{C10H8} = PICS of naphthalene = 53.0 Mb (reported by Li et al.²)

 $u_{S_{102}}$, $u_{S_{128}}$ = uncertainty (standard deviation) in product signals at m/z=102 and m/z=128

 $u_{\sigma_{C8H6}}$ = uncertainty of phenylacetylene PICS = 10%*63.0 = 6.3 Mb (estimated by Zhou et al.¹)

 $u_{\sigma_{C10H8}}$ = uncertainty of naphthalene PICS = 50%*51.4 = 25.7 Mb (estimated by Li et al.²)

- 1. Z. Zhou, M. Xie, Z. Wang and F. Qi, Rapid Communications in Mass Spectrometry, 2009, **23**, 3994-4002.
- 2. Y. Y. Li, J. Z. Yang and Z. J. Cheng, Photonionization Cross Section Database (Version 2.0), <u>http://flame.nsrl.ustc.edu.cn/database/</u>.