Supporting Information: Temperature-Dependence of the Dielectric Relaxation of Water using Non-Polarizable Water Models

Piotr Zarzycki* and Benjamin Gilbert*

Energy Geosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States

E-mail: ppzarzycki@lbl.gov; bgilbert@lbl.gov

List of Tables

S1	Kirkwood factors,	HB-dynamics				•																		S-	-2
----	-------------------	-------------	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	----

List of Figures

S1	Slow convergence of the static dielectric constant (TIP4P-FB)	S-3
S2	Convergence of the static dielectric constant (TIP3P-FB)	S-4
S3	Stochastic variation in ϵ in Langevin dynamics	S-4
S4	DRS: simulations vs experiment (H ₂ O-DC, SPC-DC) $\ldots \ldots \ldots \ldots \ldots$	S-5
S5	DRS: simulations vs experiment (OPC, OPC3)	S-6
S6	DRS: simulations vs experiment (TI3P-FB, TIP4P-FB)	S-7
S7	DRS: simulations vs experiment (TIP4Q, TIP4P/ ϵ)	S-8

Water Kirkwood factors			Hydrogen-bond network dynamics									
Model	g_K	G_K	$ au_{HB}[ps]$	$k_b [\mathrm{ps}^{-1}]$	$n_b^{cycle}(\nu_D)$	$\Delta G[\rm kcal/mol]$						
		th	ree-point	models		i .						
SPC	2.515	3.744	6.003	0.167	4.94	2.144						
SPC/E	2.499	3.722	6.888	0.145	5.17	2.226						
$\mathrm{SPC}/\mathrm{E}_\mathrm{B}$	2.468	3.676	8.742	0.114	5.36	2.367						
SPC/FW	2.794	4.166	7.417	0.135	5.66	2.270						
SPC-DC	2.693	4.015	6.306	0.159	4.97	2.173						
TIP3P	3.605	5.381	3.658	0.273	5.88	1.851						
TIP3PF	3.278	4.891	4.959	0.202	6.17	2.031						
TIP3P-FB	2.678	3.993	7.670	0.130	5.93	2.289						
H_2O -DC	2.670	3.980	7.340	0.136	5.37	2.263						
OPC3	2.655	3.958	7.539	0.133	4.99	2.279						
four-point models												
OPC	2.519	3.755	7.354	0.136	4.87	2.264						
TIP4P	2.127	3.160	5.353	0.187	3.91	2.076						
TIP4PEW	2.345	3.491	7.160	0.140	4.76	2.249						
TIP4P-FB	2.545	3.793	8.493	0.118	4.59	2.350						
TIP4P2005	2.121	3.154	7.966	0.126	4.31	2.312						
TIP4Q	2.657	3.961	7.630	0.131	5.58	2.286						
$TIP4P/\epsilon$	2.618	3.902	7.986	0.125	5.32	2.313						
		f	ive-point r	nodels		1						
TIP5P	3.485	5.199	6.490	0.154	6.93	2.190						
TIP5PEW	3.646	5.441	6.173	0.162	6.76	2.161						

Table S1: Calculated Kirkwood factors, rate constant for the hydrogen-bond breaking, and HB-bond energetics of water at 298K (19 non-polarizable water models).

Figure S1: Slow convergence of the static dielectric constant (illustrated for the TIP4P-FB water model at 298 K). The results presented in tables are averages of the dielectric properties over last nanosecond of 30 ns simulations.

Figure S2: Slow convergence of the static dielectric constant (illustrated for the TIP3P-FB water model at 298 K).

Figure S3: Stochastic variation in ϵ in Langevin dynamics for varying collision frequency γ in Langevin thermostat (TIP4P-FB water model): (a) 0.1 ps^{-1} , (b) 1.0 ps^{-1} , (c) 2.0 ps^{-1} .

Figure S4: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained for H₂ODC and SPCDC water models.^{S1} The difference between experimental and simulated static dielectric constants are within the simulation error (2-3%). The simulates predict the water relaxation is simulated at higher frequencies and shorter relaxation times (τ_D) than the Debye-function fitted to the experimental data.

Figure S5: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained for OPC3 and OPC water models.^{S2,S3} The difference between experimental and simulated static dielectric constants are within the simulation error (2-3%). The simulates predict the water relaxation is simulated at higher frequencies and shorter relaxation times (τ_D) than the Debye-function fitted to the experimental data.

Figure S6: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained for TIP3P-FB and TIP4P-FB water models.^{S4} The difference between experimental and simulated static dielectric constants are within the simulation error (2-3%). The simulates predict the water relaxation is simulated at higher frequencies and shorter relaxation times (τ_D) than the Debye-function fitted to the experimental data.

Figure S7: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained for TIP4Q and TIP4P/ ϵ water models.^{S5,S6} The difference between experimental and simulated static dielectric constants are within the simulation error (2-3%). The simulates predict the water relaxation is simulated at higher frequencies and shorter relaxation times (τ_D) than the Debye-function fitted to the experimental data.

ACKNOWLEDGEMENTS

This work was supported by funding from U.S. Department of Energy (DOE) Chemical Sciences, Geosciences, and Biosciences Division under Contract DE-AC02- 05CH11231.

References

- (S1) Fennell, C. J.; Li, L.; Dill, K. A. Simple Liquid Models with Corrected Dielectric Constants. J. Phys. Chem. B 2012, 116, 6936–6944.
- (S2) Izadi, S.; Onufriev, A. V. Accuracy Limit of Rigid 3-Point Water Models. J. Chem. Phys. 2016, 145, 074501–11.
- (S3) Izadi, S.; Anandakrishnan, R.; Onufriev, A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett 2014, 5, 3863–3871.
- (S4) Wang, L.-P.; Martinez, T. J.; Pande, V. S. Building Force Fields: An Automatic, Systematic, and Reproducible Approach. J. Phys. Chem. Lett. 2014, 5, 1885–1891.
- (S5) Alejandre, J.; Chapela, G. A.; Saint-Martin, H.; Mendoza, N. A Non-Polarizable Model of Water That Yields the Dielectric Constant and the Density Anomalies of the Liquid: TIP4Q. Phys. Chem. Chem. Phys. 2011, 13, 19728–13.
- (S6) Fuentes-Azcatl, R.; Alejandre, J. Non-Polarizable Force Field of Water Based on the Dielectric Constant: TIP4P/ε. J. Phys. Chem. B 2014, 118, 1263–1272.