Supplementary Information for

Ab Initio Dynamics of Hydrogen Abstraction from N₂H₄ by OH radical:

An RRKM-based Master Equation Study

Tam V.-T. Mai,^{1,2,*} Hieu T. Nguyen¹, and Lam K. Huynh^{3,*}

¹ Molecular Science and Nano-Materials Lab, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.

² University of Science, Vietnam National University – HCMC, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh City, Vietnam.

³ International University, Vietnam National University – HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.

*Corresponding authors.

Contents

Table	S1 :	Optimized	geometries,	electronic	energies	at 0	K	(E_{elec}^{0K}) , zero-point energy (ZPE)
correct	ions	and harmon	ic wavenumb	pers of the s	pecies inv	olve	d w	ith the lowest-energy conformer of a
given	speci	es, calculate	ed at CCSD(T)/CBS//M	06-2X/6-	311+-	+G((3df,2p) level of theory for the title
reactio	n							

Table S3:	Calcula	ated	overa	all	rate	co	nsta	ants,	$k_{\rm tot}$, of	the 1	N_2H_4	$+ \text{ OH} \rightarrow$	prod	ucts over th	e range	of	
temperature	200		3000	K	at	Р	=	760	Torr	with	and	without	HIR	treatments	based	on	
CCSD(T)/C	BS//M	[06-2	2X/6-	311	++(G(3	df,2	2p) le	vel of	theor	y. Uni	ts are in c	m ³ /m	olecule/s	••••••	•••••	5

 Table S5: Calculated thermodynamic data of the species involved in NASA format for the title

 reaction
 7

Figure S1: M06-2X/6-311++G(3df,2p) optimized geometries for the species involved in the N₂H₄ + OH reaction. All structures were obtained for the lowest-energy conformer of a given species. Bond lengths and bond angles are in Å and degree (°), respectively. ^{a, b, c, d, e, f} obtained from Tsuboi *et al.* [8], Tang *et al.* [9], Huber *et al.* [4], Hoy *et al.* [10], Gurvich *et al.* [2] and Herzberg [11], respectively...........8

 Table S1: Optimized geometries, electronic energies at 0 K ($E_{elec}^{0 \text{ K}}$), zero-point energy (ZPE) corrections and harmonic wavenumbers of the species involved with the lowest-energy conformer of a given species, calculated at CCSD(T)/CBS//M06-2X/6-311++G(3df,2p) level of theory for the title reaction.

Species		Cart	esian coordinate (Å)	2	<i>E</i> ^{0 K} _{elec} (Hartree)	ZPE (Hartree)	Unscaled vibrational frequencies ^[a] (cm ⁻¹)		
N ₂ H ₄	N	0.000000000	0.711888000	-0.073931000	-111.762113	0.053935	456.4792	837.1659	983.8477
(C ₂)	H	0.233290000	1.096273000	0.834599000			1149.7730	1306.6103	1337.6895
	H	-0.930617000	1.022768000	-0.317081000			1677.7693	1691.5919	3503.0561
	N	0.000000000	-0.711888000	-0.073931000			3510.1914	3607.0977	3613.3481
	H	0.930617000	-1.022768000	-0.317081000			(376.7 [1]; 780.	0 [2]; 966.0 [2]; 10'	76.0 [3]; 1275.0 [2]; 1275.0
	H	-0.233290000	-1.096273000	0.834599000			[2]; 1628.0 [2];	1642.0 [3]; 3314.0	[2]; 3329.0 [3]; 3350.0 [2];
							3398.0 [3])		
ОН	0	0.000000000	0.000000000	0.107841000	-75.678298	0.008594	3772.3906 (373	7.8) [4]	
$(C_{\infty v})$	H	0.000000000	0.000000000	-0.862726000				, <u> </u>	
RC	N	-1.064489000	-0.680233000	-0.120152000	-187.452865	0.066121	116.3421	208.4956	232.3586
(C ₁)	H	-1.883948000	-0.925235000	0.422726000			380.6348	610.5391	756.1863
	H	-0.276263000	-1.217132000	0.222525000			872.0995	1020.5025	1146.4034
	N	-0.737053000	0.701372000	0.006621000			1307.9600	1352.5886	1673.6136
	H	-1.213040000	1.208917000	-0.727602000			1694.4290	3431.7873	3503.6922
	H	-1.022877000	1.090031000	0.899147000			3509.0255	3600.5952	3606.4644
	0	1.984011000	-0.088668000	0.008667000					
	H	1.134829000	0.404792000	-0.091415000					
TS1	N	0.589520000	0.749524000	0.093541000	-187.443994	0.063863	-383.6143	156.2509	198.1793
(C_1)	H	0.404735000	1.189851000	-0.797535000			227.2116	522.8449	580.3970
	H	-0.283472000	0.667925000	0.640861000			762.3747	928.4211	1138.9856
	N	1.232769000	-0.480389000	-0.125426000			1252.3314	1373.7288	1640.2053
	H	0.559538000	-1.190992000	-0.401215000			1679.6876	3093.1859	3464.4702
	H	1.656874000	-0.768123000	0.746543000			3589.4573	3606.2092	3818.6515
		-1.618484000	-0.266870000	0.062220000					
		-2.145823000	0.352361000	-0.463216000	105 414512	0.064065	0.44.0500		
		0.05/363000	-0.209252000	-0.000158000	-187.411713	0.064993	-941.8708	247.4297	2/3.3997
(C_1)		0.061751000	-0.818205000	-0.811063000			291.6127	462.4152	522.7916
	H	0.061880000	-0.819173000	0.810014000			915.3303	932.3138	1095.9160

Species		Cart	esian coordinate (Å)	;	<i>E</i> ^{0 K} _{elec} (Hartree)	ZPE (Hartree)	Unsc	aled vibrational fro	equencies ^[a] (cm ⁻¹)
	N	-1.728024000	0.022278000	0.000150000			1280.0681	1332.2917	1530.0342
	H	-1.830119000	0.644204000	0.802502000			1576.9499	3441.6309	3532.6439
	H	-1.830236000	0.645499000	-0.801177000			3543.8248	3636.0377	3914.0022
	0	1.690849000	0.077314000	-0.000020000					
	Н	1.704556000	1.037978000	-0.000065000					
PC	N	0.904003000	0.721684000	0.012156000	-187.511373	0.065660	179.8924	192.8272	230.2471
(C ₁)	H	1.829884000	1.130671000	-0.101748000			265.9670	375.6061	546.0712
	H	-1.066959000	0.601893000	-0.054005000			670.2131	742.3608	1162.7291
	N	1.052648000	-0.602612000	0.078820000			1321.4940	1484.2178	1640.1259
	H	1.879490000	-1.052686000	-0.286891000			1655.2801	3510.4701	3516.3821
	H	0.180833000	-1.113116000	0.018694000			3650.2560	3703.9865	3973.2157
	0	-1.768382000	-0.066848000	-0.103089000					
	H	-2.372755000	0.134514000	0.611828000					
N_2H_3	N	-0.590674000	0.024445000	-0.066851000	-111.119005	0.039822	524.7286	707.2286	1145.4111
(C ₁)	H	-1.017418000	0.904360000	0.189425000			1293.0997	1486.1696	1660.6973
	H	-1.133753000	-0.796292000	0.149147000			3452.2059	3531.6000	3678.6318
	N	0.733970000	-0.151406000	0.021782000					
	H	1.148106000	0.780661000	-0.023083000					
H ₂ O	0	0.000000000	0.000000000	0.116269000	-76.379099	0.021678	1619.8405	3895.1601	4000.3510
(C _{2v})	H	0.000000000	0.761709000	-0.465075000			(1595.0; 3657.0	0 [5]; 3756.0 [4])	
	Н	0.000000000	-0.761709000	-0.465075000					
NH ₂ OH	N	-0.009699000	0.693817000	0.000000000	-131.612501	0.041192	433.5638	1014.1868	1164.3672
(C _s)	H	0.543784000	0.950235000	0.811953000			1361.9311	1421.3981	1685.3473
	H	0.543784000	0.950235000	-0.811953000			3504.8465	3586.1126	3909.5418
	0	-0.009699000	-0.725969000	0.000000000			(386.0 [5]; 895.	2 [6]; 1115.5 [6]; 12	294.5 [6]; 1353.3 [6]; 1604.5
	H	-0.942085000	-0.949438000	0.000000000			[6]; 3294.3 [6];	3358.8 [6]; 3649.9	[6])
NH ₂	N	0.000000000	0.000000000	0.141114000	-55.822746	0.019237	1527.3038	3412.5353	3504.0696
(C _{2v})	H	0.000000000	0.804394000	-0.493899000			(1497.3 [7]; 32	19.4 [7]; 3301.1 [4])
	H	0.000000000	-0.804394000	-0.493899000					

Frequencies in the parentheses ("()") are taken from experimental studies.

Table S2: T1 diagnostics and spin contaminant for the open shell species involved in N_2H_4 + OH reaction computed at UCCSD(T)/aug-cc-pV(T,Q)Z based on the M06-2X/6-311++G(3df,2p) geometries. "aTZ" and "aQZ" denote for aug-cc-pVTZ & aug-cc-pVQZ, respectively.

Spacing	T1 dia	gnostics	Spin contaminant			
species	UCCSD(T)/aTZ	UCCSD(T)/aQZ	UCCSD(T)/aTZ	UCCSD(T)/aQZ		
ОН	0.01001371	0.00949501	0.7500	0.7500		
RC	0.01008440	0.00971666	0.7500	0.7500		
TS1	0.03103722	0.03071951	0.7501	0.7501		
TS2	0.03325900	0.03314802	0.7571	0.7572		
PC	0.01779455	0.01748602	0.7502	0.7502		
NH ₂	0.01021578	0.01014355	0.7501	0.7501		
N ₂ H ₃	0.02078132	0.02057907	0.7502	0.7502		

Table S3: Calculated overall rate constants, k_{tot} , of the N₂H₄ + OH \rightarrow products over the range of temperature 200 – 3000 K at *P* = 760 Torr with and without HIR treatments based on CCSD(T)/CBS//M06-2X/6-311++G(3df,2p) level of theory. Units are in cm³/molecule/s.

	$N_2H_4 + OH \rightarrow products (k_{tot})$					
I (K)	With HIR	Without HIR				
200	6.26E-11	4.87E-11				
250	4.75E-11	3.50E-11				
300	3.91E-11	2.71E-11				
400	3.11E-11	1.88E-11				
500	2.97E-11	1.43E-11				
600	3.13E-11	1.18E-11				
700	3.45E-11	1.07E-11				
800	3.86E-11	1.05E-11				
900	4.31E-11	1.13E-11				
1000	4.78E-11	1.35E-11				
1100	5.26E-11	1.65E-11				
1200	5.76E-11	2.02E-11				
1300	6.32E-11	2.45E-11				
1400	6.88E-11	2.96E-11				
1500	7.44E-11	3.44E-11				
1600	8.07E-11	3.96E-11				
1700	8.61E-11	4.45E-11				
1800	9.21E-11	4.95E-11				
1900	9.73E-11	5.47E-11				
2000	1.03E-10	5.96E-11				
2100	1.09E-10	6.45E-11				
2200	1.15E-10	6.89E-11				
2300	1.20E-10	7.41E-11				
2400	1.26E-10	7.83E-11				
2500	1.31E-10	8.30E-11				
2600	1.37E-10	8.70E-11				
2700	1.42E-10	9.11E-11				

2800	1.47E-10	9.62E-11
2900	1.53E-10	9.87E-11
3000	1.58E-10	1.02E-10

Table S4: Calculated overall rate constants, k_{tot} , of the N₂H₄ + OH \rightarrow products over the range of temperature 200 – 3000 K at the different pressures (i.e., 1, 760 and 7600 Torr) with HIR treatments and tunneling effects based on CCSD(T)/CBS//M06-2X/6-311++G(3df,2p) level of theory. Units are in cm³/molecule/s.

T	$N_2H_4 + OH \rightarrow products (k_{tot})$							
I (K)	1 Torr	760 Torr	7600 Torr					
200	5.50E-11	6.26E-11	7.59E-11					
250	4.38E-11	4.75E-11	5.27E-11					
300	3.66E-11	3.91E-11	4.10E-11					
400	3.03E-11	3.11E-11	3.17E-11					
500	2.99E-11	2.97E-11	2.99E-11					
600	3.15E-11	3.13E-11	3.13E-11					
700	3.45E-11	3.45E-11	3.46E-11					
800	3.83E-11	3.86E-11	3.85E-11					
900	4.31E-11	4.31E-11	4.31E-11					
1000	4.80E-11	4.78E-11	4.78E-11					
1100	5.32E-11	5.26E-11	5.31E-11					
1200	5.82E-11	5.76E-11	5.81E-11					
1300	6.36E-11	6.32E-11	6.37E-11					
1400	6.91E-11	6.88E-11	6.94E-11					
1500	7.45E-11	7.44E-11	7.49E-11					
1600	8.03E-11	8.07E-11	8.02E-11					
1700	8.59E-11	8.61E-11	8.59E-11					
1800	9.15E-11	9.21E-11	9.15E-11					
1900	9.70E-11	9.73E-11	9.72E-11					
2000	1.03E-10	1.03E-10	1.03E-10					
2100	1.08E-10	1.09E-10	1.09E-10					
2200	1.14E-10	1.15E-10	1.14E-10					
2300	1.20E-10	1.20E-10	1.20E-10					
2400	1.26E-10	1.26E-10	1.25E-10					
2500	1.32E-10	1.31E-10	1.31E-10					
2600	1.37E-10	1.37E-10	1.36E-10					
2700	1.42E-10	1.42E-10	1.42E-10					
2800	1.48E-10	1.47E-10	1.48E-10					
2900	1.53E-10	1.53E-10	1.53E-10					
3000	1.58E-10	1.58E-10	1.57E-10					

Table S5: Calculated thermodynamic data of the species involved in NASA format for the title reaction.

4

4

4

4

4

4

2

3

2

G 300.000 2500.000 1500.000 oh O 1H 1 1.88516486E+001-3.73201434E-0022.90412010E-005-9.92871903E-0091.25881490E-012 2 1.94245122E+003-9.56227412E+0011.00185370E+0004.21481574E-004-8.15743202E-007 3 6.42588641E-010-1.75428999E-0138.64874073E+0031.81777404E+000 n2h4 N 2H 4 G 300.000 2500.000 1500.000 1 -1.29683914E+0013.36676575E-002-2.49543300E-0058.11533829E-009-9.81263451E-0132.09660713E+0041.06576921E+0023.88053887E+000-3.95409504E-0041.07098586E-006 -1.16316747E-0093.95477771E-0131.43988653E+0041.38769619E+001 rc N 2H 5O 1 G 300.000 2500.000 1500.000 1 3.41926984E+002-6.82507788E-0015.12334095E-004-1.68733462E-0072.05602514E-011 -1.08778060E+005-1.82306756E+0034.81941265E+0001.83109033E-003-2.04872777E-006 3 2.31314398E-0103.95254256E-0132.24861985E+0042.98973578E+001 N 2H 3 G 300.000 2500.000 1500.000 n2h3 1 4.69592525E+001-8.59741271E-0026.29330850E-005-2.04291558E-0082.48298743E-012 2 3.54028491E+002-2.29409770E+0022.86835431E+0001.14996484E-003-1.93590678E-006 3 1.30408866E-009-2.94570928E-0131.81526390E+0041.43847547E+001 h2o O 1H 2 G 300.000 2500.000 1500.000 1 8.38585854E-0014.38564923E-003-5.45642149E-0062.55538513E-009-4.09438468E-013 3.92614166E+0026.84952831E+0001.73761726E+000-3.41305469E-0046.07497735E-007 3 -4.41071214E-0101.13126948E-0135.41127220E+0023.25445581E+000 N 1H 3O 1 G 300.000 2500.000 1500.000 nh2oh 1 7.82454297E+001-1.50985539E-0011.12269192E-004-3.65984149E-0084.41006260E-012 2 -1.72268051E+004-4.03429158E+0021.81822022E+0007.02147432E-003-1.27228159E-005 3 9.64977082E-009-2.60141336E-0121.23893056E+0041.59508220E+001

nh2 N 1H 2 G 300.000 2500.000 1500.000 1 -2.68484151E+0008.08121962E-003-5.71254714E-0061.85313714E-009-2.35614906E-013 2 1.29357799E+0042.81804795E+0011.67304818E+0008.45484781E-005-3.79559026E-007 3 4.77299297E-010-1.83127885E-0131.10516209E+0043.78343009E+000 4

Table S6: Comparison of the relative energies (0 K) obtained from CCSD(T)/CBS//M06-2X/6-311++G(3df,2p) and CCSD(T)/CBS//M06-2X/aug-cc-pVTZ levels, including ZPE corrections. Units are in kcal/mol.

Species	CCSD(T)/CBS//M06-2X/6-	CCSD(T)/CBS//M06-2X/aug-cc-		
	311++G(3df,2p)	pVTZ		
RC	-5.6	-5.6		
TS1	-1.4	-1.5		
TS2	19.5	19.4		
PC	-42.6	-42.7		
P1	-36.9	-36.8		
P2	1.9	1.9		
Mean absolute deviation $(MAD) = 0.06$ (kcal/mol)				

Figure S1: M06-2X/6-311++G(3df,2p) optimized geometries for the species involved in the N_2H_4 + OH reaction. All structures were obtained for the lowest-energy conformer of a given species. Bond lengths and bond angles are in Å and degree (°), respectively. ^{a, b, c, d, e, f} obtained from Tsuboi *et al.* [8], Tang *et al.* [9], Huber *et al.* [4], Hoy *et al.* [10], Gurvich *et al.* [2] and Herzberg [11], respectively.

Figure S2: Hindrance potentials for the species involved in the N_2H_4 + OH reaction, calculated at M06-2X/6-311G(d,p) level of theory.

Figure S3: Calculated rate coefficients of $N_2H_4 + OH \rightarrow$ products as a function of temperature at the different pressures (i.e., 1, 760 and 7600 Torr).

Figure S4: Plot of the relative Gibbs free energy $\Delta G(X)$ (X = RC, TS1 and N₂H₃ + H₂O (P1)) calculated at different temperatures (i.e., 0, 200, 1000 and 3000 K).

Figure S5: Flux conversion as a function of time at different temperatures and P = 7600 torr for N₂H₄ + OH \rightarrow products.

Figure S6: Tunneling factor as a function of temperature for $RC \rightarrow N_2H_3 + H_2O$ (via TS1), calculated using the 1-D asymmetrical Eckart [12] (solid line) and Skodje/Truhlar [13] (dashed line) potentials.

Figure S7: M06-2X/6-311++G(3df,2p) and M06-2X/aug-cc-pVTZ (values in parentheses) optimized geometries for the TS1 and TS2. Bond lengths are in Å.

References:

- [1] Yamaguchi A, Ichishima I, Shimanouchi T, Mizushima S-I. Far infra-red spectrum of hydrazine. Spectrochimica Acta 1960;16(11-12):1471-85.
- [2] Gurvich LV, Veyts IV, Alcock CB. Thermodynamic Properties of Individual Substances. 4th ed. New York: Hemisphere; 1989.
- [3] Durig JR, Griffin MG, Macnamee RW. Raman spectra of gases. XV: Hydrazine and hydrazined4. Journal of Raman Spectroscopy 1975;3(2-3):133-41.
- [4] Huber KP, Herzberg G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. Van Nostrand Reinhold Co; 1979.
- [5] Shimanouchi T. Tables of Molecular Vibrational Frequencies, Consolidated Volume 1, NSRDS NBS-39.
- [6] Luckhaus D. The rovibrational spectrum of hydroxylamine: A combined high resolution experimental and theoretical study. The Journal of Chemical Physics 1997;106(20):8409-26.
- [7] Jacox ME. Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules. J Phys ChemRef Data 1994;Monograph 3
- [8] Tsuboi M, Overend J. Amino wagging and inversion in hydrazines. Journal of Molecular Spectroscopy 1974;52(2):256-68.
- [9] Tang Y, Sun J, Jia X, Sun H, Pan X, Wang R. Mechanistic and kinetic investigations of N2H4 + OH reaction. J Comput Chem 2010;31(7):1520-7.
- [10] Hoy AR, Bunker PR. A precise solution of the rotation bending Schrödinger equation for a triatomic molecule with application to the water molecule. Journal of Molecular Spectroscopy 1979;74(1):1-8.
- [11] Herzberg G. Electronic spectra and electronic structure of polyatomic molecules. New York: Van Nostrand; 1966.
- [12] Eckart C. The Penetration of a Potential Barrier by Electrons. Phys Rev 1930;35(11):1303-9.
- [13] Skodje RT, Truhlar DG. Parabolic tunneling calculations. J Phys Chem 1981;85(6):624-8.