Suplimentary Information for Effect of ammonia and formic acid on CH₃O[•] + O₂ reaction: A quantum chemical investigation

Amit Kumar,[†] Subhasish Mallick,[†] Brijesh Kumar Mishra,[‡] and Pradeep

Kumar^{*,†}

†Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India

‡International Institute of Information Technology Bangalore, Bangalore, 560100, India

E-mail: pradeep.chy@mnit.ac.in

Sl. No.	Contents
1	Formal proof for same value of trimolecular rate constant for path A, B and C
2	${\bf Table \ S1:} Optimized \ geometries \ in \ cartesian \ coordinates \ and \ all \ normal \ mode \ frequencies \ calculated \ at \ the$
	MN15L/aug-cc-pVTZ level of theory.
3	Table S2 :Bimolecular rate constant k_b in (cm ³ molecule ⁻¹ sec ⁻¹) for formic acid catalysed
	channel within temperature range 213-900 K
4	Table S3 :Bimolecular rate constant k_b in (cm ³ molecule ⁻¹ sec ⁻¹) for ammonia catalysed channel
	within temperature range 213-900 K
5	Table S4 :Relative energies (ΔE_{AM}) including ZPE in kcal mol ⁻¹ for the complexes of
	AM catalyzed channels with respect to the isolated reactants at the $MN15L/aug$ -cc-pVTZ level of theory
6	Table S5:Relative energies (ΔE_{FA}) including ZPE in kcal mol ⁻¹ for the complexes of FA catalyzed
	channels with respect to the isolated reactants at the $MN15L/aug$ -cc-pVTZ level of theory
7	Table S6 : Termolecular rate constant k_t in $(cm^6 \text{ molecule}^{-2} \sec^{-1})$ for formic acid catalysed
	channel within temperature range 213-900K
8	Table S7 : Termolecular rate constant k_t in $(cm^6 \text{ molecule}^{-2} \sec^{-1})$ for ammonia catalysed
	channel within temperature range 213-900K
9	Figure S1:Gibbs free energy profile for $CH_3O^{\bullet}+O_2$ reaction in presence of AM calculated
	at MN15L/aug-cc-pVTZ level
10	Figure S2:Gibbs free energy profile for $CH_3O^{\bullet}+O_2$ reaction in presence of FA calculated
	at MN15L/aug-cc-pVTZ level
11	Table S8 : Absolute energies in (Hartree) for the relevant species at $CCSD(T)$ level of theory.
12	Table S9: Absolute energies in (Hartree) for the relevant species at post $CCSD(T)$ level of theory.
14	Figure S3:Reaction scheme for the uncat CH 3 O $$ + O 2 reaction, at the geometries obtained at the
	MN15-L/aug-cc-pVTZ level (the bond lengths are in angstrom).
15	Table S10: Convergence threshold values for all the optimized geometry for all species.

1 Formal proof for same value of trimolecular rate con-

stamt for path A, B and C

$$M+O+X \xrightarrow{k_1} M-O+X \xrightarrow{k_2} RC_{SHAT} \xrightarrow{k_{uni}} product + X$$
(path A)

$$M+O+X \xrightarrow{k_1} M-X+O \xrightarrow{k_2} RC_{SHAT} \xrightarrow{k_{uni}} product + X$$
 (path B)

$$M+O+X \xrightarrow{k_1} O-X+M \xrightarrow{k_2} RC_{SHAT} \xrightarrow{k_{uni}} product + X$$
(path C)

where X = AM or FAFor path A,

$$K_{eq1} = \frac{[M - O]}{[M][O]}$$
(1)

and

$$K_{eq2} = \frac{[RC_{SHAT}]}{[M-O][X]} \tag{2}$$

Therefore,

$$K_{eq1} \times K_{eq2} = \frac{[RC_{SHAT}]}{[M][O][X]}$$
(3)

Similarly, for path B,

$$K_{eq1} \times K_{eq2} = \frac{[M-X]}{[M][X]} \times \frac{[RC_{SHAT}]}{[M-X][O]}$$
 (4)

$$K_{eq1} \times K_{eq2} = \frac{[RC_{SHAT}]}{[M][O][X]}$$

$$\tag{5}$$

and similarly, for path C,

$$K_{eq1} \times K_{eq2} = \frac{[O-X]}{[O][X]} \times \frac{[RC_{SHAT}]}{[O-X][M]}$$
 (6)

$$K_{eq1} \times K_{eq2} = \frac{[RC_{SHAT}]}{[M][O][X]}$$

$$\tag{7}$$

From the equation 3, 5 and 7, it is clear that, the product of K_{eq1} and Keq2 is same for path A, B and C. As the k_{uni} for path A, B and C are also same, it gives same trimolecular rate k_t .

compound	car	tesian coord	inate(Å)		frequency(em^{-1})	
	Ν	0.00	0.00	0.122292	1108.8664	1675.5286	1675.5428
NH ₃	Н	0.00	0.937718	-0.285349	3459.8692	3597.8474	3597.8599
	H	-0.812087	-0.468859	-0.285349			
	Н	0.812087	-0.468859	-0.285349			
	0	-0.010886	0.790359	0.00	629.8694	971.5897	1139.3653
	C	-0.010886	-0.571036	0.00	1363.1103	1364.1439	1512.2245
CH ₂ O•	Ĥ	1.064364	-0.873809	0.00	2887.334	2958.3412	2997.6522
0	н	-0.455982	-1.011423	0.917135			
	н	-0.455982	-1 011423	-0.917135			
Oa	0	0.00	0.00	0.603041	1681 6327		
02	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	0.00	0.00	-0.603041	1001.0021		
	C	1 282028	0.00	0.000011	175 1513	243 3366	341 193
	н	1.202020 1.486644	-0 143796	0.00	430 6723	683 8525	1051 249
	н	1 936139	1 348969	0.00	1170 283	1178 3575	1380 6056
MO	н	1.486644	0.143706	0.00	1428 0611	1/38 1615	1502.262
111-0		0.00	1003376	0.00472	2076 1275	$3051\ 5270$	3095 2381
		1.042463	1.005570 0.177202	0.00	2310.1215	5051.5275	3035.2501
		-1.042403 0 522726	-0.177303 1 204977	0.00			
		-0.002700	-1.304277	0.00	00.6710	100.0056	191.0090
		-1.391934	-0.465009	-0.000082	90.0719	129.8930	131.9038
		-1.905819	-0.751408	0.916701	133.2397	202.0349	204.3097
		-1.967957	-0.729322	-0.916841	834.458	969.8284	1131.0073
	H	-0.491524	-1.147521	-0.002864	1138.5281	1356.067	1361.559
25.425		-0.895902	0.784169	0.0002	1509.7705	1670.3679	1671.785
M-AM		1.953472	-0.192279	-0.000224	2871.3519	2955.737	2999.2338
		2.97393	-0.131495	-0.00088	3455.4574	3586.3773	3596.1484
	H	1.646311	0.357084	-0.807358			
	H	1.647576	0.353677	0.809698			
	H	-1.573193	0.45537	-0.775782	22.0066	71.5059	101.9221
	H	-1.558569	0.307944	0.840521	144.966	163.7647	1107.4426
	0	1.170942	0.605971	0.008516	1672.8544	1675.2388	1678.6031
AM-O	0	1.270676	-0.596151	-0.009074	3456.6192	3593.7465	3596.5431
	N	-1.92406	-0.125909	-0.010587			
	H	-2.932763	0.039487	0.013833			
	C	-1.024656	1.141663	-0.508677	79.2205	91.1538	133.3841
	H	-1.245592	2.196831	-0.27351	142.7143	179.4593	194.8879
	H	-1.882223	0.700371	-1.050299	210.131	247.3655	342.658
	H	-0.108492	1.086435	-1.123134	431.0343	682.4169	1043.0953
	0	-0.486063	-0.952962	0.562392	1112.2766	1173.9553	1178.6361
	0	-0.430181	-1.319379	-0.619429	1376.3775	1427.2526	1437.9763
RC_{SHAT}^{AM}	0	-0.846145	0.567871	0.751648	1497.2375	1672.0645	1677.6009
	H	1.8326	0.49264	0.801789	2981.7822	3069.3406	3096.7154
	H	3.289099	0.546452	0.073683	3459.7104	3595.1516	3599.3383
	N	2.301224	0.346414	-0.095951			
	H	2.25309	-0.661848	-0.261711			
	0	-0.804469	-1.211407	0.619903	77.3502	88.4688	92.5236
	0	-1.016832	-1.412993	-0.549684	107.7264	137.086	138.1944
	H	-2.131102	1.306314	0.121058	157.5942	171.3629	186.0316
	C	1.72169	0.084567	-0.560741	204.6511	271.6647	787.3154
	H	1.997843	-0.958067	-0.82488	1014.1478	1121.2636	1141.1722
$\mathrm{RC}_{DH\Delta T}^{AM}$	H	2.599208	0.731506	-0.802634	1363.5775	1375.987	1507.9562
DIIAI	0	1.481924	0.264225	0.770066	1665.4154	1673.8564	1681.5219
	H	-1.473967	2.780752	-@@60158	2889.0267	2960.5075	3005.2824
	H	0.890376	0.463092	-1.193145	3453.2764	3585.3939	3596.3161
	N	-1.27324	1.783928	-0.165438			
	H	-0.584804	1.562914	0.559996			
1					1		

Table S1: Optimized geometries in Cartesian coordinates and normal mode frequencies of all species calculated at MN15L/aug-cc-pVTZ level of theory

compound	geo	ometry			frequency		
I	0	0.415939	1.189397	0.585674	-589.9562	92.1114	113.2896
	Õ	0.407226	1.321496	-0.619676	140.1743	153.899	181.7449
	H	0.714919	-0.085456	-1.049658	254.1143	266.1674	290.5464
	C	0.983354	-1.136471	-0.493783	451.9649	584.1577	836.2303
	Н	0.18313	-1.771699	-0.939318	1090.1816	1123.987	1261.9144
TS^{AM}_{SHAT}	Н	2.013422	-1.328768	-0.876054	1271.8569	1355.1751	1511.0025
SHAI	0	0.872222	-0.848783	0.761983	1577.6507	1672.7106	1680.4176
	Н	-3.07309	-0.842332	0.026364	1882.3066	2885.4185	2968.6088
	Н	-1.583341	-0.643226	0.66305	3452.2881	3583.3693	3595.3197
	Ν	-2.188302	-0.348713	-0.109141			
	Н	-2.400148	0.634418	0.07845			
	0	1.490523	-0.936008	0.000261	-1206.5008	23.2938	57.4789
	0	2.331515	-0.03852	-0.000763	86.211	138.1969	193.521
	Н	0.452697	1.325497	0.819753	214.4627	217.134	279.4012
	С	-2.166427	-0.13169	-0.001134	477.4241	514.1818	534.766
	Н	-2.733581	0.114797	0.935572	1088.2852	1202.2819	1203.6688
	Н	-2.73127	0.112364	-0.939856	1336.3226	1341.1569	1431.5625
TS_{DHAT}^{AM}	0	-1.364376	-1.127359	0.001157	1529.2957	1539.9445	1636.1252
DIIM	Η	-0.221686	2.615848	0.00198	1651.2623	2798.6216	2850.9075
	Η	-1.229062	0.888097	-0.001073	3459.1073	3603.9979	3623.5609
	Ν	-0.093524	1.602912	0.000492			
	Η	0.454848	1.328245	-0.818265			
	0	-0.908886	-1.363016	0.000805	18.3801	36.6958	70.0871
	0	-2.093369	-0.775069	-0.000981	100.7649	122.2051	155.4415
	Η	-1.865649	0.207095	-0.000775	165.1108	173.6001	264.7416
	С	2.332923	-0.610249	-0.000079	278.9659	448.6697	839.6691
	0	2.010012	0.552934	0.00034	1186.1244	1217.5571	1244.9007
	Η	3.41136	-0.912788	0.000453	1262.1083	1528.9417	1612.726
PC^{AM}	Η	1.5796	-1.432072	-0.000713	1678.3988	1688.0633	1830.2213
	Ν	-0.995708	1.758695	-0.000065	2874.376	2976.6157	3102.5499
	Η	-0.02189	1.438237	0.000284	3457.1376	3582.9424	3613.8171
	Η	-1.096108	2.366081	-0.814896			
	Η	-1.096949	2.365276	0.815263			
	C	0.00	0.00	0 527005	1100	1955	1520
		0.00	0.00	-0.027090	1199	1200	1052
	п	0.00	0.949407	-1.122202	1047	2830	2091
	п	0.00	-0.949407	-1.122202			
	0	0.00	0.00	0.079892			
	0	0.055586	-0.608155	0.00	1199	1463	3645
HO_2^{\bullet}	Η	-0.889376	-0.865124	0.00			

compound	geo	ometry			frequency		
	C	-2.067835	0.482742	0.057368	21.0123	116.7312	137.851
	H	-3.169547	0.576759	0.082918	145.1759	161.5058	186.3133
	Н	-1.585582	0.970234	0.933194	577.3074	671.5516	880.5225
	H	-1.647951	1.068501	-0.794613	1038.5615	1075.2122	1190.3644
FA-M	0	-1.629173	-0.801503	-0.073568	1211.4456	1324.0154	1372.0023
	H	2.828606	0.185969	0.036746	1393.1222	1432.8543	1487.7723
	C	1.718586	0.174817	0.006846	1830.1157	2898.5948	2953.7283
	0	1.271846	-1.077978	0.037695	3016.4698	3040.5869	3564.0999
	0	1.029791	1.166941	-0.045413			
	H	0.290258	-1.046493	0.006753			
	C	1.728702	-0.273866	-0.000203	19.7695	44.904	70.3061
	H	2.822251	-0.46182	-0.000849	86.0592	115.353	643.9264
	0	0.878744	-1.125938	0.000093	711.9065	1064.7553	1162.8963
FA-O	0	1.500783	1.047705	0.000196	1333.8011	1412.7659	1685.2736
	H	0.535733	1.170463	0.000763	1850.8268	3030.6255	3783.5033
	0	-2.277874	-0.459265	0.000198			
	0	-1.817928	0.654317	-0.000324			
	C	0	0.420414	0	635.7155	700.6172	1063.5703
	H	-0.384421	1.46167	0	1156.7893	1323.4493	1408.2646
FA	0	1.161222	0.107406	0	1854.2502	3026.8996	3776.1448
	0	-1.031367	-0.438549	0			
	H	-0.654421	-1.33501	0			
	C	-1.663436	-1.253252	0.614523	59.8081	80.1848	90.488
	H	-1.682601	-2.303757	0.995265	97.8871	102.3464	123.2914
	H	-2.715353	-0.905565	0.57145	148.8262	160.0484	168.183
	H	-1.056125	-0.678676	1.342326	179.1205	201.1012	670.3664
	0	-0.809342	1.333412	-0.797161	807.5698	921.6678	1014.8006
	0	-1.236489	1.800286	0.227013	1073.7674	1132.8015	1210.9733
RC_{SHAT}^{FA}	$\left \begin{array}{c} 0 \\ c \end{array} \right $	-1.078442	-1.321459	-0.617928	1361.6502	1366.3041	1375.6351
	C	2.041238	0.055008	0.225311	1430.6817	1502.8576	1668.1746
	0	1.31054	0.210582	1.175942	1829.2136	2888.4979	2977.8468
		1.726678	-0.580295	-0.900212	3017.936	3037.0356	3567.6881
		3.084853	0.430708	0.173031			
	H	0.798846	-0.893458	-0.822312	F 40 7107	ro 9970	07 7010
		1.410004	1.098001	0.74184 1 545217	-549.7187	28.3378 127 7966	97.7218
		0.073708	1.312983	1.343317 0.016797	120.9090	137.7200	107.0793
		2.444074	1.400070	0.910727	199.0704	240.0880 574.0117	200.4401 670.2445
		1.308701	-0.000779 1 157715	0.942100 0.482056	430.2449 840.0654	011 4.2117	079.2440 1077.5149
TSFA		0.965792 2.052447	0.205242	-0.482000	1085 4505	911.4474 1999.0500	1077.0142 1272.0042
¹ S _{SHAT}		-2.052447	-0.203342	1 070144	1005.4505	1342 6056	1272.0042
		-1.200099	0.497475	-0.844865	1444 8331	1507 9307	1500.4052 1508.7250
	н	-3 10035	-0.568026	0.044000 0.125739	1824 1558	1905 429	2905 9775
	H	-0.836118	0.86996	-0 76281	2995 2797	3014 7006	3499 4333
	$\hat{0}$	1 439134	-1 362335	0.124075	2000.2101	0014.1000	0100.1000
	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	1 021048	-0.926575	-0.91968			
	$\overline{0}$	-2 391627	-0 420634	0.238275	31 2289	54 8199	84 3374
	ŏ	-1.775668	-1.281229	-0.549944	105.3109	118.4852	150.5353
	Č	-0.755909	1.631242	0.535586	195.9062	213.6264	216.1725
	H	-1.728818	2.14977	0.685489	234.8026	407.8224	503.4817
	H	-0.364894	1.042554	1.399409	687.8586	940.5425	1086.2052
	Ō	-0.144256	1.721606	-0.509646	1191.1756	1243.4762	1250.8715
PC^{FA}	H	1.440803	0.888946	-0.471893	1261.3806	1393.3826	1453.8034
	C	2.010627	-0.790358	0.18119	1527.103	1544.0912	1781.461
	0	2.288029	0.408584	-0,288626	1810.4752	2919.7407	2995.8456
	0	0.89866	-1.250404	0.360658	3041.8074	3392.8661	3477.1864
	Н	2.938327	-1.353333	0.40857			
	H	-0.814833	-1.196614	-0.327965			

compound	geo	ometry			frequency		
TS_{uncat}	0	1.11791	-0.579382	0.00	-647.615	249.8996	288.4955
	0	1.238127	0.629061	0.00	464.4597	587.6052	826.5895
	H	-0.171109	1.036939	0.00	1110.2364	1252.87	1268.1011
	C	-1.269395	0.482229	0.00	1372.8823	1518.7819	1576.9936
	H	-1.701004	0.902441	0.939646	1829.4982	2873.7346	2947.2746
	H	-1.701004	0.902442	-0.939645			
	0	-0.957351	-0.766579	0.00			
PC _{uncat}	0	1.454169	0.756108	-0.000042	58.4905	135.8479	137.0022
	0	1.574034	-0.562584	0.000081	176.0066	216.0374	503.8332
	H	0.640795	-0.881174	-0.000196	1219.5211	1224.0489	1264.6915
	C	-1.76334	0.44768	0.000031	1521.3271	1525.9385	1820.5948
	H	-2.871127	0.597463	0.00028	2894.6064	2979.9016	3543.6791
	H	-1.123141	1.360168	-0.000096			
	0	-1.286514	-0.663841	-0.000061			

$\operatorname{Temp}(K)$	path A (SHAT)	path B (SHAT)	path C (SHAT)	Uncat
213	1.54×10^{-7}	1.51×10^{-14}	5.20×10^{-11}	3.26×10^{-16}
216	1.22×10^{-7}	1.47×10^{-14}	4.19×10^{-11}	3.50×10^{-16}
219	9.69×10^{-8}	1.44×10^{-14}	3.40×10^{-11}	3.75×10^{-16}
224	6.71×10^{-8}	1.38×10^{-14}	2.43×10^{-11}	4.19×10^{-16}
230	4.42×10^{-8}	1.33×10^{-14}	1.66×10^{-11}	4.77×10^{-16}
235	3.18×10^{-8}	1.28×10^{-14}	1.22×10^{-11}	5.30×10^{-16}
250	1.30×10^{-8}	1.17×10^{-14}	5.32×10^{-12}	7.09×10^{-16}
259	8.00×10^{-9}	1.12×10^{-14}	3.40×10^{-12}	8.34×10^{-16}
265	5.91×10^{-9}	1.09×10^{-14}	2.56×10^{-12}	9.24×10^{-16}
278	$3.23{ imes}10^{-9}$	1.03×10^{-14}	1.45×10^{-12}	1.14×10^{-15}
280	2.96×10^{-9}	1.03×10^{-14}	1.34×10^{-12}	1.18×10^{-15}
290	1.96×10^{-9}	9.91×10^{-15}	9.05×10^{-13}	1.37×10^{-15}
298	1.44×10^{-9}	9.67×10^{-15}	6.75×10^{-13}	1.53×10^{-15}
300	$1.33{ imes}10^{-9}$	9.62×10^{-15}	6.29×10^{-13}	1.58×10^{-15}
310	9.34×10^{-10}	9.36×10^{-15}	4.48×10^{-13}	1.80×10^{-15}
320	6.72×10^{-10}	9.15×10^{-15}	3.27×10^{-13}	2.05×10^{-15}
330	4.94×10^{-10}	8.97×10^{-15}	2.43×10^{-13}	2.32×10^{-15}
350	2.84×10^{-10}	8.68×10^{-15}	1.43×10^{-13}	2.91×10^{-15}
375	1.57×10^{-10}	8.43×10^{-15}	7.98×10^{-14}	3.77×10^{-15}
400	9.46×10^{-11}	8.28×10^{-15}	4.84×10^{-14}	4.77×10^{-15}
425	6.12×10^{-11}	8.21×10^{-15}	3.14×10^{-14}	5.90×10^{-15}
450	4.20×10^{-11}	8.20×10^{-15}	2.15×10^{-14}	7.19×10^{-15}
475	3.02×10^{-11}	8.24×10^{-15}	1.54×10^{-14}	8.62×10^{-15}
500	$2.27{ imes}10^{-11}$	8.31×10^{-15}	1.15×10^{-14}	1.02×10^{-14}
550	1.41×10^{-11}	8.57×10^{-15}	7.06×10^{-15}	1.39×10^{-14}
600	9.76×10^{-12}	8.93×10^{-15}	4.78×10^{-15}	1.82×10^{-14}
650	7.28×10^{-12}	9.38×10^{-15}	3.49×10^{-15}	2.32×10^{-14}
700	5.76×10^{-12}	9.93×10^{-15}	2.71×10^{-15}	2.91×10^{-14}
725	5.22×10^{-12}	1.02×10^{-14}	2.43×10^{-15}	3.23×10^{-14}
775	4.42×10^{-12}	1.09×10^{-14}	2.02×10^{-15}	3.93×10^{-14}
800	4.12×10^{-12}	1.12×10^{-14}	1.86×10^{-15}	4.32×10^{-14}
825	3.87×10^{-12}	1.16×10^{-14}	1.73×10^{-15}	4.73×10^{-14}
850	3.65×10^{-12}	1.20×10^{-14}	1.62×10^{-15}	5.16×10^{-14}
875	3.47×10^{-12}	1.24×10^{-14}	1.53×10^{-15}	5.61×10^{-14}
900	$3.32{ imes}10^{-12}$	1.28×10^{-14}	1.45×10^{-15}	6.09×10^{-14}

Table S2: Bimolecular rate constant k_b in (cm³ molecule⁻¹ sec⁻¹) for formic acid catalysed channel within temperature range 213-900 K

Temp(K)	path A (SHAT)	path B (SHAT)	path C (SHAT)	path D	Uncat
213	1.34×10^{-11}	2.23×10^{-15}	1.55×10^{-15}	4.07×10^{-23}	3.26×10^{-16}
216	1.28×10^{-11}	2.27×10^{-15}	1.48×10^{-15}	4.46×10^{-23}	3.50×10^{-16}
219	1.21×10^{-11}	2.32×10^{-15}	1.41×10^{-15}	4.92×10^{-23}	3.75×10^{-16}
224	1.13×10^{-11}	$2.39{ imes}10^{-15}$	1.31×10^{-15}	5.84×10^{-23}	4.19×10^{-16}
230	1.03×10^{-11}	2.49×10^{-15}	1.20×10^{-15}	7.26×10^{-23}	4.77×10^{-16}
235	9.68×10^{-12}	2.56×10^{-15}	1.12×10^{-15}	8.80×10^{-23}	5.30×10^{-16}
250	8.14×10^{-12}	2.80×10^{-15}	9.39×10^{-16}	1.61×10^{-22}	7.09×10^{-16}
259	7.46×10^{-12}	2.95×10^{-15}	8.55×10^{-16}	$2.35{ imes}10^{-22}$	8.34×10^{-16}
265	7.07×10^{-12}	3.05×10^{-15}	8.06×10^{-16}	$3.03{ imes}10^{-22}$	9.24×10^{-16}
278	$6.39{ imes}10^{-12}$	$3.27{ imes}10^{-15}$	7.18×10^{-16}	5.24×10^{-22}	1.14×10^{-15}
280	6.30×10^{-12}	3.30×10^{-15}	7.06×10^{-16}	5.69×10^{-22}	1.18×10^{-15}
290	5.90×10^{-12}	3.48×10^{-15}	6.54×10^{-16}	8.60×10^{-22}	1.37×10^{-15}
298	5.63×10^{-12}	3.62×10^{-15}	6.18×10^{-16}	1.19×10^{-21}	1.53×10^{-15}
300	5.57×10^{-12}	$3.66{ imes}10^{-15}$	6.10×10^{-16}	$1.29{ imes}10^{-21}$	1.58×10^{-15}
310	5.30×10^{-12}	3.84×10^{-15}	5.72×10^{-16}	$1.90{ imes}10^{-21}$	1.80×10^{-15}
320	5.08×10^{-12}	4.03×10^{-15}	5.40×10^{-16}	2.78×10^{-21}	2.05×10^{-15}
330	4.89×10^{-12}	4.22×10^{-15}	5.12×10^{-16}	4.01×10^{-21}	2.32×10^{-15}
350	4.61×10^{-12}	4.61×10^{-15}	4.68×10^{-16}	8.02×10^{-21}	2.91×10^{-15}
375	4.38×10^{-12}	5.13×10^{-15}	$4.27{ imes}10^{-16}$	$1.78{ imes}10^{-20}$	3.77×10^{-15}
400	4.24×10^{-12}	5.67×10^{-15}	3.98×10^{-16}	$3.67{ imes}10^{-20}$	4.77×10^{-15}
425	4.18×10^{-12}	6.24×10^{-15}	3.77×10^{-16}	7.11×10^{-20}	5.90×10^{-15}
450	4.17×10^{-12}	6.84×10^{-15}	3.62×10^{-16}	1.30×10^{-19}	7.19×10^{-15}
475	4.20×10^{-12}	7.47×10^{-15}	3.51×10^{-16}	2.26×10^{-19}	8.62×10^{-15}
500	$4.27{ imes}10^{-12}$	8.13×10^{-15}	3.44×10^{-16}	$3.76{ imes}10^{-19}$	$1.02{ imes}10^{-14}$
550	4.49×10^{-12}	9.56×10^{-15}	$3.38{ imes}10^{-16}$	$9.33{ imes}10^{-19}$	$1.39{ imes}10^{-14}$
600	4.80×10^{-12}	1.11×10^{-14}	3.39×10^{-16}	2.05×10^{-18}	1.82×10^{-14}
650	5.19×10^{-12}	1.29×10^{-14}	3.47×10^{-16}	4.09×10^{-18}	2.32×10^{-14}
700	5.65×10^{-12}	1.47×10^{-14}	3.59×10^{-16}	7.53×10^{-18}	2.91×10^{-14}
725	5.91×10^{-12}	1.58×10^{-14}	$3.67{ imes}10^{-16}$	$9.98{ imes}10^{-18}$	3.23×10^{-14}
775	6.49×10^{-12}	$1.79{ imes}10^{-14}$	3.84×10^{-16}	$1.68{ imes}10^{-17}$	$3.93{ imes}10^{-14}$
800	6.80×10^{-12}	1.90×10^{-14}	3.94×10^{-16}	$2.14{ imes}10^{-17}$	4.32×10^{-14}
825	7.14×10^{-12}	$2.02{ imes}10^{-14}$	4.06×10^{-16}	$2.69{ imes}10^{-17}$	4.73×10^{-14}
850	7.48×10^{-12}	2.15×10^{-14}	4.17×10^{-16}	$3.35{ imes}10^{-17}$	5.16×10^{-14}
875	7.85×10^{-12}	$2.28{ imes}10^{-14}$	4.29×10^{-16}	4.13×10^{-17}	5.61×10^{-14}
900	8.23×10^{-12}	$2.41{\times}10^{-14}$	4.42×10^{-16}	5.05×10^{-17}	6.09×10^{-14}

Table S3: Bimolecular rate constant k_b in (cm³ molecule⁻¹ sec⁻¹) for ammonia catalysed channel within temperature range 213-900 K

Table S4: Relative energies (ΔE_{AM}) including ZPE in kcal mol⁻¹ for the complexes of AM catalyzed channels with respect to the isolated reactants at the MN15L/aug-cc-pVTZ level of theory

complexes	ΔE_{WM}
M-O	0.54
M-AM	-2.31
AM-O	-0.45
RC_{DHAT}	-4.68
RC_{SHAT}	-2.55
TS_{DHAT}	9.29
TS_{SHAT}	-0.99
\mathbf{PC}	-38.41
product	-26.09

Table S5: Relative energies (ΔE_{FA}) including ZPE in kcal mol⁻¹ for the complexes of FA catalyzed channels with respect to the isolated reactants at the MN15L/aug-cc-pVTZ level of theory

complexes	ΔE_{WM}
M-O	0.54
M-FA	-6.81
FA-O	-1.21
RC_{SHAT}	-9.59
TS_{SHAT}	-6.77
\mathbf{PC}	-41.52
product	-26.09

Table S6: Termolecular rate constant k_t in $(cm^6 molecule^{-2} sec^{-1})$ for formic acid catalysed channel within temperature range 213-900K

Tomn (IZ)		dtor.				1+04				404		
(vi)dina i	-71	paur		-	71	paul 17	- -	-	-11	рачи	-	-
	\mathbf{N}_{eq1}	Λ_{eq2}	Kuni c = c _ c e	K_t	\mathbf{N}_{eq1}	\mathbf{N}_{eq2}	Kuni	Kt 23	Λ_{eq1}	Γ_{eq2}	Kuni	\mathbf{K}_t
213	1.26×10^{-20}	2.28×10^{-10}	$6.76 \times 10^{\circ}$	1.95×10^{-33}	1.29×10^{-19}	2.24×10^{-23}	$6.76 \times 10^{\circ}$	1.95×10^{-33}	3.75×10^{-23}	7.69×10^{-20}	$6.76 \times 10^{\circ}$	1.95×10^{-33}
216	$1.27{ imes}10^{-26}$	$1.70{ imes}10^{-16}$	7.18×10^{8}	1.54×10^{-33}	1.05×10^{-19}	2.05×10^{-23}	7.18×10^{8}	1.54×10^{-33}	3.68×10^{-23}	5.84×10^{-20}	7.18×10^{8}	1.54×10^{-33}
219	$1.27\! imes\!10^{-26}$	$1.27{ imes}10^{-16}$	7.61×10^{8}	$1.23\! imes\!10^{-33}$	8.53×10^{-20}	$1.89\! imes\!10^{-23}$	7.61×10^8	$1.23{ imes}10^{-33}$	$3.61\! imes\!10^{-23}$	4.47×10^{-20}	7.61×10^8	1.23×10^{-33}
224	$1.27{ imes}10^{-26}$	$8.03{ imes}10^{-17}$	$8.36{ imes}10^8$	$8.53 { imes} 10^{-34}$	$6.16{ imes}10^{-20}$	$1.66\!\times\!10^{-23}$	$8.36\!\times\!10^8$	$8.53{ imes}10^{-34}$	$3.51\! imes\!10^{-23}$	$2.91\! imes\!10^{-20}$	$8.36\! imes\!10^8$	8.53×10^{-34}
230	$1.28\! imes\!10^{-26}$	$4.76{ imes}10^{-17}$	$9.30{ imes}10^8$	$5.64\! imes\!10^{-34}$	$4.26{\times}10^{-20}$	$1.43{ imes}10^{-23}$	$9.30{ imes}10^8$	$5.64{ imes}10^{-34}$	$3.41\! imes\!10^{-23}$	$1.78\! imes\!10^{-20}$	$9.30\! imes\!10^8$	$5.64{ imes}10^{-34}$
235	$1.28\!\times\!10^{-26}$	$3.15{ imes}10^{-17}$	$1.01{ imes}10^9$	$4.07 { imes} 10^{-34}$	$3.18{ imes}10^{-20}$	$1.27{ imes}10^{-23}$	1.01×10^{9}	$4.07{ imes}10^{-34}$	$3.33\!\times\!10^{-23}$	$1.21\! imes\!10^{-20}$	1.01×10^{9}	$4.07{ imes}10^{-34}$
250	$1.29\! imes\!10^{-26}$	$1.02{ imes}10^{-17}$	$1.28{ imes}10^9$	$1.67{ imes}10^{-34}$	$1.43{ imes}10^{-20}$	$9.19{ imes}10^{-24}$	$1.28{\times}10^9$	$1.67{ imes}10^{-34}$	$3.14{ imes}10^{-23}$	$4.17{ imes}10^{-21}$	$1.28{ imes}10^9$	$1.67{\times}10^{-34}$
259	$1.30\! imes\!10^{-26}$	$5.53{ imes}10^{-18}$	1.45×10^{9}	$1.04\! imes\! 10^{-34}$	$9.26{ imes}10^{-21}$	$7.75 \! imes \! 10^{-24}$	1.45×10^{9}	$1.04{ imes}10^{-34}$	$3.06\! imes\!10^{-23}$	$2.35\!\times\!10^{-21}$	1.45×10^9	$1.04{ imes}10^{-34}$
265	$1.30\! imes\!10^{-26}$	$3.78{ imes}10^{-18}$	$1.57{ imes}10^9$	$7.70\! imes\!10^{-35}$	$7.07{ imes}10^{-21}$	$6.96\! imes\!10^{-24}$	$1.57{ imes}10^9$	$7.70{ imes}10^{-35}$	$3.01\! imes\!10^{-23}$	$1.64\! imes\! 10^{-21}$	$1.57{ imes}10^9$	$7.70{ imes}10^{-35}$
278	$1.32\! imes\!10^{-26}$	$1.76{ imes}10^{-18}$	$1.83{ imes}10^9$	$4.25\!\times\!10^{-35}$	$4.12{ imes}10^{-21}$	$5.64{ imes}10^{-24}$	$1.83{ imes}10^9$	$4.25{ imes}10^{-35}$	$2.93\! imes\!10^{-23}$	$7.93\! imes\!10^{-22}$	1.83×10^{9}	4.25×10^{-35}
280	$1.32\! imes\!10^{-26}$	$1.58{ imes}10^{-18}$	$1.88{\times}10^9$	$3.91\! imes\!10^{-35}$	$3.81 { imes} 10^{-21}$	$5.47{ imes}10^{-24}$	$1.88{ imes}10^9$	$3.90{ imes}10^{-35}$	$2.92\! imes\!10^{-23}$	7.14×10^{-22}	1.88×10^{9}	$3.90{ imes}10^{-35}$
290	$1.33\!\times\!10^{-26}$	$9.35{ imes}10^{-19}$	$2.09{ imes}10^9$	$2.60\! imes\!10^{-35}$	$2.62{ imes}10^{-21}$	$4.74 { imes} 10^{-24}$	$2.09{\times}10^9$	$2.60{ imes}10^{-35}$	$2.87{ imes}10^{-23}$	$4.32\!\times\!10^{-22}$	$2.09{ imes}10^9$	$2.60{ imes}10^{-35}$
298	$1.34\! imes\!10^{-26}$	$6.32{ imes}10^{-19}$	$2.27{ imes}10^9$	$1.92\! imes\!10^{-35}$	$1.98{ imes}10^{-21}$	$4.26\! imes\!10^{-24}$	$2.27{\times}10^9$	$1.92{ imes}10^{-35}$	$2.85\!\times\!10^{-23}$	$2.97\! imes\!10^{-22}$	$2.27{ imes}10^9$	$1.92{ imes}10^{-35}$
300	$1.34\!\times\!10^{-26}$	$5.75{ imes}10^{-19}$	$2.32{ imes}10^9$	$1.78\! imes\!10^{-35}$	$1.86{ imes}10^{-21}$	$4.15{ imes}10^{-24}$	$2.32{ imes}10^9$	$1.78{ imes}10^{-35}$	$2.84{ imes}10^{-23}$	$2.71\! imes\!10^{-22}$	$2.32{ imes}10^9$	1.78×10^{-35}
310	$1.35\!\times\!10^{-26}$	$3.67{ imes}10^{-19}$	$2.55{\times}10^9$	$1.26\! imes\!10^{-35}$	$1.35{ imes}10^{-21}$	$3.68{ imes}10^{-24}$	$2.55\!\times\!10^{9}$	$1.26{ imes}10^{-35}$	$2.82\! imes\!10^{-23}$	$1.76\! imes\!10^{-22}$	2.55×10^{9}	1.26×10^{-35}
320	$1.36\!\times\!10^{-26}$	$2.42{ imes}10^{-19}$	$2.78{ imes}10^9$	$9.15\! imes\!10^{-36}$	$1.00{ imes}10^{-21}$	$3.29{ imes}10^{-24}$	$2.78{ imes}10^9$	$9.15{ imes}10^{-36}$	$2.80\! imes\!10^{-23}$	$1.17{ imes}10^{-22}$	$2.78{ imes}10^9$	$9.15{ imes}10^{-36}$
330	1.38×10^{-26}	$1.64{ imes}10^{-19}$	$3.02{ imes}10^9$	$6.79\! imes\!10^{-36}$	$7.58{ imes}10^{-22}$	$2.97{ imes}10^{-24}$	$3.02\!\times\!10^9$	$6.80{ imes}10^{-36}$	$2.79{ imes}10^{-23}$	$8.05\! imes\! 10^{-23}$	$3.02\! imes\!10^9$	$6.79{ imes}10^{-36}$
350	$1.40\! imes\!10^{-26}$	$8.11{ imes}10^{-20}$	$3.51{ imes}10^9$	$3.99\! imes\!10^{-36}$	$4.60{\times}10^{-22}$	$2.47{ imes}10^{-24}$	$3.51\!\times\!10^9$	$3.99{ imes}10^{-36}$	$2.80\! imes\!10^{-23}$	$4.07\! imes\!10^{-23}$	$3.51{ imes}10^9$	$3.99{ imes}10^{-36}$
375	1.44×10^{-26}	$3.81{ imes}10^{-20}$	$4.13{\times}10^9$	$2.26\!\times\!10^{-36}$	$2.68{ imes}10^{-22}$	$2.04\! imes\!10^{-24}$	4.13×10^{9}	$2.26{ imes}10^{-36}$	$2.83\! imes\!10^{-23}$	$1.93\!\times\!10^{-23}$	$4.13{\times}10^9$	$2.26{ imes}10^{-36}$
400	1.48×10^{-26}	$1.99{ imes}10^{-20}$	4.75×10^{9}	$1.40\!\times\!10^{-36}$	$1.69{ imes}10^{-22}$	$1.75 \! imes \! 10^{-24}$	4.75×10^{9}	$1.40{ imes}10^{-36}$	$2.89{ imes}10^{-23}$	$1.02\! imes\! 10^{-23}$	4.75×10^{9}	$1.40{ imes}10^{-36}$
425	$1.53\! imes\! 10^{-26}$	$1.14{ imes}10^{-20}$	$5.36{ imes}10^9$	$9.34\! imes\! 10^{-37}$	1.14×10^{-22}	$1.53 { imes} 10^{-24}$	$5.36{ imes}10^9$	$9.34{ imes}10^{-37}$	$2.97{ imes}10^{-23}$	$5.86\! imes\!10^{-24}$	$5.36{ imes}10^9$	$9.34{ imes}10^{-37}$
450	$1.57{ imes}10^{-26}$	$7.03{ imes}10^{-21}$	$5.97{ imes}10^9$	$6.61\! imes\! 10^{-37}$	$8.06{ imes}10^{-23}$	$1.37 { imes} 10^{-24}$	$5.97{ imes}10^9$	$6.61{ imes}10^{-37}$	$3.07\! imes\!10^{-23}$	$3.60\! imes\!10^{-24}$	$5.97{ imes}10^9$	6.61×10^{-37}
475	$1.63\!\times\!10^{-26}$	$4.60{ imes}10^{-21}$	$6.57{ imes}10^9$	$4.92\! imes\!10^{-37}$	$5.97{ imes}10^{-23}$	$1.25\!\times\!10^{-24}$	$6.57{ imes}10^9$	$4.92{ imes}10^{-37}$	$3.18{ imes}10^{-23}$	$2.35\! imes\! 10^{-24}$	$6.57{ imes}10^9$	4.92×10^{-37}
500	1.68×10^{-26}	$3.17{ imes}10^{-21}$	$7.16{\times}10^{9}$	$3.81\! imes\!10^{-37}$	$4.59{ imes}10^{-23}$	$1.16{ imes}10^{-24}$	7.16×10^{9}	$3.81{ imes}10^{-37}$	$3.31\! imes\!10^{-23}$	$1.61\! imes\!10^{-24}$	7.16×10^{9}	$3.81{ imes}10^{-37}$
550	$1.80\! imes\!10^{-26}$	$1.71{ imes}10^{-21}$	8.28×10^{9}	$2.54{ imes}10^{-37}$	$2.97{ imes}10^{-23}$	$1.04\! imes\!10^{-24}$	$8.28{ imes}10^9$	$2.54{ imes}10^{-37}$	$3.60\! imes\!10^{-23}$	$8.53 \! imes \! 10^{-25}$	8.28×10^{9}	$2.54{\times}10^{-37}$
009	$1.93\! imes\! 10^{-26}$	$1.05{ imes}10^{-21}$	$9.34{ imes}10^9$	1.88×10^{-37}	$2.10{ imes}10^{-23}$	$9.56\! imes\!10^{-25}$	9.34×10^{9}	$1.88{ imes}10^{-37}$	$3.93{ imes}10^{-23}$	$5.12\! imes\!10^{-25}$	9.34×10^{9}	1.88×10^{-37}
650	$2.07\! imes\!10^{-26}$	$7.04{ imes}10^{-22}$	$1.03\!\times\!10^{10}$	$1.50\! imes\!10^{-37}$	$1.60{ imes}10^{-23}$	$9.08\! imes\!10^{-25}$	$1.03\!\times\!10^{10}$	$1.50{ imes}10^{-37}$	$4.30{ imes}10^{-23}$	$3.38{ imes}10^{-25}$	$1.03\!\times\!10^{10}$	$1.50{ imes}10^{-37}$
200	$2.22\! imes\!10^{-26}$	$5.11{ imes}10^{-22}$	$1.13{ imes}10^{10}$	$1.28\!\times\!10^{-37}$	$1.29{ imes}10^{-23}$	$8.81\! imes\!10^{-25}$	$1.13\!\times\!10^{10}$	$1.28{ imes}10^{-37}$	$4.72\! imes\!10^{-23}$	$2.40\! imes\!10^{-25}$	$1.13 { imes} 10^{10}$	1.28×10^{-37}
725	$2.30\! imes\!10^{-26}$	$4.46{ imes}10^{-22}$	$1.17{ imes}10^{10}$	$1.20\! imes\!10^{-37}$	$1.17{ imes}10^{-23}$	$8.72 { imes} 10^{-25}$	$1.17{ imes}10^{10}$	$1.20{ imes}10^{-37}$	$4.94{ imes}10^{-23}$	$2.07\! imes\!10^{-25}$	$1.17{ imes}10^{10}$	1.20×10^{-37}
775	$2.46\!\times\!10^{-26}$	$3.51{ imes}10^{-22}$	$1.26\! imes\!10^{10}$	$1.09\!\times\!10^{-37}$	$1.00{ imes}10^{-23}$	$8.65\! imes\!10^{-25}$	$1.26\!\times\!10^{10}$	$1.09{ imes}10^{-37}$	$5.40{ imes}10^{-23}$	$1.60\!\times\!10^{-25}$	$1.26\!\times\!10^{10}$	$1.09{ imes}10^{-37}$
800	$2.55\! imes\! 10^{-26}$	$3.17{ imes}10^{-22}$	$1.30\! imes\!10^{10}$	$1.05\!\times\!10^{-37}$	$9.36{ imes}10^{-24}$	$8.64\!\times\!10^{-25}$	$1.30\! imes\!10^{10}$	$1.05{ imes}10^{-37}$	$5.65\! imes\!10^{-23}$	$1.43\!\times\!10^{-25}$	$1.30{ imes}10^{10}$	1.05×10^{-37}
825	$2.64\! imes\!10^{-26}$	$2.89{ imes}10^{-22}$	$1.34\!\times\!10^{10}$	$1.02\! imes\! 10^{-37}$	8.81×10^{-24}	$8.66\!\times\!10^{-25}$	$1.34\!\times\!10^{10}$	$1.02{ imes}10^{-37}$	$5.91\! imes\!10^{-23}$	$1.29\! imes\!10^{-25}$	$1.34 { imes} 10^{10}$	$1.02{ imes}10^{-37}$
850	$2.74{ imes}10^{-26}$	$2.65{ imes}10^{-22}$	$1.38\! imes\!10^{10}$	$9.99\! imes\!10^{-38}$	$8.35{ imes}10^{-24}$	$8.69\! imes\!10^{-25}$	$1.38{ imes}10^{10}$	$1.00{ imes}10^{-37}$	$6.17{ imes}10^{-23}$	$1.18{ imes}10^{-25}$	$1.38\!\times\!10^{10}$	1.00×10^{-37}
875	$2.83\! imes\!10^{-26}$	$2.45{ imes}10^{-22}$	1.42×10^{10}	$9.83\! imes\!10^{-38}$	$7.95{ imes}10^{-24}$	$8.74{ imes}10^{-25}$	$1.42\!\times\!10^{10}$	$9.84{ imes}10^{-38}$	$6.45\!\times\!10^{-23}$	$1.08\!\times\!10^{-25}$	1.42×10^{10}	$9.84{ imes}10^{-38}$
000	$2.93\! imes\!10^{-26}$	$2.29{ imes}10^{-22}$	$1.45\!\times\!10^{10}$	$9.73\! imes\!10^{-38}$	$7.60{ imes}10^{-24}$	$8.81\! imes\!10^{-25}$	$1.45\!\times\!10^{10}$	$9.73{ imes}10^{-38}$	$6.73\! imes\!10^{-23}$	$9.95\! imes\! 10^{-26}$	1.45×10^{10}	9.73×10^{-38}

mp(K)		path	Α	-		path	В	-		path	C	-		path	D	
	\mathbf{K}_{eq1}	K_{eq2}	\mathbf{k}_{uni}	\mathbf{k}_t	\mathbf{K}_{eq1}	K_{eq2}	\mathbf{k}_{uni}	\mathbf{k}_t	\mathbf{K}_{eq1}	K_{eq2}	\mathbf{k}_{uni}	\mathbf{k}_t	K_{eq1}	K_{eq2}	\mathbf{k}_{uni}	\mathbf{k}_t
213	$1.26\!\times\!10^{-26}$	$1.19{\times}10^{-22}$	1.12×10^{11}	$1.69{\times}10^{-37}$	7.61×10^{-23}	$1.98{ imes}10^{-26}$	1.12×10^{11}	$1.69{ imes}10^{-37}$	1.09×10^{-22}	$1.38\!\times\!10^{-26}$	$1.12{ imes}10^{11}$	$1.69{ imes}10^{-37}$	$1.09{ imes}10^{-22}$	5.65×10^{-24}	2.40	4.44×10^{-45}
216	$1.27\! imes\!10^{-26}$	$1.09{ imes}10^{-22}$	1.17×10^{11}	1.61×10^{-37}	7.10×10^{-23}	$1.94{ imes}10^{-26}$	$1.17{ imes}10^{11}$	$1.61 { imes} 10^{-37}$	1.09×10^{-22}	$1.26\!\times\!10^{-26}$	$1.17{\times}10^{11}$	$1.61{ imes}10^{-37}$	$1.09{ imes}10^{-22}$	$4.91 { imes} 10^{-24}$	3.03	4.87×10^{-45}
219	$1.27\! imes\!10^{-26}$	9.95×10^{-23}	1.22×10^{11}	$1.54{\times}10^{-37}$	$6.65\! imes 10^{-23}$	$1.90{ imes}10^{-26}$	$1.22{ imes}10^{11}$	$1.54{\times}10^{-37}$	1.09×10^{-22}	$1.16\!\times\!10^{-26}$	1.22×10^{11}	$1.54{\times}10^{-37}$	$1.09{ imes}10^{-22}$	$4.29\!\times\!10^{-24}$	3.82	5.37×10^{-45}
24	$1.27\! imes\!10^{-26}$	8.63×10^{-23}	$1.31\! imes\!10^{11}$	$1.43{ imes}10^{-37}$	5.98×10^{-23}	$1.83{ imes}10^{-26}$	$1.31{ imes}10^{11}$	$1.43{ imes}10^{-37}$	1.09×10^{-22}	$1.00\!\times\!10^{-26}$	$1.31{ imes}10^{11}$	$1.43{ imes}10^{-37}$	$1.09{\times}10^{-22}$	3.45×10^{-24}	5.64	6.38×10^{-45}
230	$1.28\!\times\!10^{-26}$	$7.34{ imes}10^{-23}$	1.41×10^{11}	$1.32{ imes}10^{-37}$	$5.30\! imes\!10^{-23}$	$1.76{ imes}10^{-26}$	1.41×10^{11}	$1.32{ imes}10^{-37}$	$1.10\! imes\!10^{-22}$	$8.53\!\times\!10^{-27}$	1.41×10^{11}	$1.32{ imes}10^{-37}$	$1.10{ imes}10^{-22}$	$2.70\! imes\!10^{-24}$	8.97	7.97×10^{-45}
235	$1.28\!\times\!10^{-26}$	$6.46{ imes}10^{-23}$	1.50×10^{11}	$1.24{\times}10^{-37}$	$4.83\!\times\!10^{-23}$	$1.71{ imes}10^{-26}$	$1.50{ imes}10^{11}$	$1.24{ imes}10^{-37}$	$1.10\! imes\!10^{-22}$	$7.50\!\times\!10^{-27}$	$1.50{ imes}10^{11}$	$1.24{ imes}10^{-37}$	$1.10{ imes}10^{-22}$	$2.22\!\times\!10^{-24}$	$1.32{ imes}10^{1}$	9.68×10^{-45}
250	$1.29\!\times\!10^{-26}$	$4.57{ imes}10^{-23}$	1.78×10^{11}	1.05×10^{-37}	$3.75\! imes\!10^{-23}$	$1.57{ imes}10^{-26}$	1.78×10^{11}	$1.05{ imes}10^{-37}$	$1.12\! imes\!10^{-22}$	$5.27\! imes\!10^{-27}$	1.78×10^{11}	$1.05{ imes}10^{-37}$	$1.12{ imes}10^{-22}$	$1.31\! imes\!10^{-24}$	4.11×10^{1}	1.80×10^{-44}
259	$1.30\!\times\!10^{-26}$	3.81×10^{-23}	1.96×10^{11}	9.68×10^{-38}	$3.28 imes 10^{-23}$	$1.51{ imes}10^{-26}$	$1.96{\times}10^{11}$	$9.67{ imes}10^{-38}$	1.13×10^{-22}	$4.36\!\times\!10^{-27}$	$1.96{ imes}10^{11}$	$9.68{ imes}10^{-38}$	$1.13{ imes}10^{-22}$	$9.83\!\times\!10^{-25}$	7.97×10^{1}	2.66×10^{-44}
265	$1.30\!\times\!10^{-26}$	$3.40{ imes}10^{-23}$	$2.08\!\times\!10^{11}$	$9.21{ imes}10^{-38}$	$3.02\! imes\!10^{-23}$	$1.47{ imes}10^{-26}$	$2.08{ imes}10^{11}$	$9.22{ imes}10^{-38}$	1.14×10^{-22}	$3.87\!\times\!10^{-27}$	$2.08{ imes}10^{11}$	$9.22{ imes}10^{-38}$	$1.14{\times}10^{-22}$	$8.23\!\times\!10^{-25}$	$1.23{ imes}10^2$	3.46×10^{-44}
278	$1.32\!\times\!10^{-26}$	$2.71 { imes} 10^{-23}$	2.35×10^{11}	$8.40{ imes}10^{-38}$	$2.57{ imes}10^{-23}$	$1.39{ imes}10^{-26}$	$2.35{ imes}10^{11}$	$8.40{ imes}10^{-38}$	$1.17{ imes}10^{-22}$	$3.05\!\times\!10^{-27}$	2.35×10^{11}	$8.40{ imes}10^{-38}$	$1.17{ imes}10^{-22}$	$5.77\! imes\!10^{-25}$	$3.03{ imes}10^2$	6.13×10^{-44}
280	$1.32\!\times\!10^{-26}$	$2.63{ imes}10^{-23}$	2.40×10^{11}	$8.30{ imes}10^{-38}$	$2.51\!\times\!10^{-23}$	$1.38{ imes}10^{-26}$	$2.40{ imes}10^{11}$	$8.29{ imes}10^{-38}$	$1.17{ imes}10^{-22}$	$2.95\!\times\!10^{-27}$	$2.40{ imes}10^{11}$	$8.29{ imes}10^{-38}$	$1.17{ imes}10^{-22}$	$5.48\!\times\!10^{-25}$	$3.46{\times}10^2$	6.69×10^{-44}
290	$1.33\!\times\!10^{-26}$	$2.26{ imes}10^{-23}$	$2.62\! imes\!10^{11}$	$7.84{ imes}10^{-38}$	$2.25\!\times\!10^{-23}$	$1.33{ imes}10^{-26}$	$2.62{ imes}10^{11}$	$7.84{ imes}10^{-38}$	$1.20\! imes\!10^{-22}$	$2.50\!\times\!10^{-27}$	$2.62{ imes}10^{11}$	$7.83{ imes}10^{-38}$	$1.20{ imes}10^{-22}$	$4.30\!\times\!10^{-25}$	$6.67{\times}10^2$	1.03×10^{-43}
298	$1.34\!\times\!10^{-26}$	$2.02{ imes}10^{-23}$	2.79×10^{11}	$7.53{ imes}10^{-38}$	2.08×10^{-23}	$1.30{ imes}10^{-26}$	$2.79{ imes}10^{11}$	$7.53{ imes}10^{-38}$	$1.22\! imes\!10^{-22}$	$2.21\!\times\!10^{-27}$	$2.79{ imes}10^{11}$	$7.53{ imes}10^{-38}$	$1.22{ imes}10^{-22}$	$3.59\!\times\!10^{-25}$	1.11×10^{3}	1.45×10^{-43}
300	$1.34\!\times\!10^{-26}$	$1.96{ imes}10^{-23}$	2.84×10^{11}	$7.46{ imes}10^{-38}$	$2.04 {\times}10^{-23}$	$1.29{ imes}10^{-26}$	$2.84{ imes}10^{11}$	$7.46{ imes}10^{-38}$	$1.22\! imes\!10^{-22}$	$2.15\!\times\!10^{-27}$	$2.84{ imes}10^{11}$	$7.46{ imes}10^{-38}$	$1.22{ imes}10^{-22}$	$3.43\!\times\!10^{-25}$	1.25×10^{3}	1.58×10^{-43}
310	$1.35\!\times\!10^{-26}$	$1.73{ imes}10^{-23}$	$3.07\! imes\!10^{11}$	$7.16{\times}10^{-38}$	$1.86\! imes\!10^{-23}$	$1.25{\times}10^{-26}$	$3.07{ imes}10^{11}$	$7.16{ imes}10^{-38}$	$1.25\!\times\!10^{-22}$	$1.86\!\times\!10^{-27}$	$3.07{ imes}10^{11}$	$7.16{ imes}10^{-38}$	$1.25{ imes}10^{-22}$	$2.79\! imes\!10^{-25}$	$2.28{\times}10^3$	2.38×10^{-43}
320	$1.36\!\times\!10^{-26}$	$1.54{\times}10^{-23}$	$3.30 imes 10^{11}$	$6.92{ imes}10^{-38}$	$1.72\! imes\!10^{-23}$	$1.22{ imes}10^{-26}$	$3.30{ imes}10^{11}$	$6.92{ imes}10^{-38}$	1.28×10^{-22}	$1.63\!\times\!10^{-27}$	$3.30{ imes}10^{11}$	$6.92{ imes}10^{-38}$	$1.28{ imes}10^{-22}$	$2.30\!\times\!10^{-25}$	4.03×10^{3}	3.56×10^{-43}
330	$1.38\!\times\!10^{-26}$	$1.38{ imes}10^{-23}$	3.54×10^{11}	$6.73{ imes}10^{-38}$	$1.60\! imes\!10^{-23}$	$1.19{ imes}10^{-26}$	$3.54{\times}10^{11}$	$6.73{ imes}10^{-38}$	$1.31\!\times\!10^{-22}$	$1.45\!\times\!10^{-27}$	$3.54{\times}10^{11}$	$6.73{ imes}10^{-38}$	$1.31{ imes}10^{-22}$	$1.93\!\times\!10^{-25}$	6.94×10^{3}	5.27×10^{-43}
350	$1.40\!\times\!10^{-26}$	$1.15{ imes}10^{-23}$	$4.02\! imes\!10^{11}$	$6.47{ imes}10^{-38}$	$1.40\! imes\!10^{-23}$	$1.15{\times}10^{-26}$	$4.02{ imes}10^{11}$	$6.47{ imes}10^{-38}$	1.38×10^{-22}	$1.16\!\times\!10^{-27}$	$4.02{ imes}10^{11}$	$6.46{ imes}10^{-38}$	$1.38{\times}10^{-22}$	$1.40\!\times\!10^{-25}$	$1.91{ imes}10^4$	1.11×10^{-42}
375	1.44×10^{-26}	$9.43{ imes}10^{-24}$	$4.65\!\times\!10^{11}$	$6.31\! imes\!10^{-38}$	$1.23\! imes\!10^{-23}$	$1.10{ imes}10^{-26}$	$4.65{\times}10^{11}$	$6.31 { imes} 10^{-38}$	1.48×10^{-22}	$9.20\! imes\!10^{-28}$	$4.65{ imes}10^{11}$	$6.31{ imes}10^{-38}$	$1.48{ imes}10^{-22}$	$9.95\!\times\!10^{-26}$	$5.96{ imes}10^4$	2.63×10^{-42}
400	$1.48\!\times\!10^{-26}$	$8.04{ imes}10^{-24}$	5.28×10^{11}	$6.29{ imes}10^{-38}$	1.11×10^{-23}	$1.07{ imes}10^{-26}$	$5.28{ imes}10^{11}$	$6.29{ imes}10^{-38}$	1.58×10^{-22}	$7.54\!\times\!10^{-28}$	$5.28{ imes}10^{11}$	$6.29{ imes}10^{-38}$	$1.58{\times}10^{-22}$	$7.47\! imes\!10^{-26}$	1.64×10^{5}	5.81×10^{-42}
425	$1.53\!\times\!10^{-26}$	$7.07{ imes}10^{-24}$	$5.92{ imes}10^{11}$	$6.38{ imes}10^{-38}$	$1.02\! imes\!10^{-23}$	$1.05{\times}10^{-26}$	$5.92{ imes}10^{11}$	$6.38{ imes}10^{-38}$	$1.69\! imes\!10^{-22}$	$6.37\!\times\!10^{-28}$	$5.92{ imes}10^{11}$	$6.38{ imes}10^{-38}$	$1.69{ imes}10^{-22}$	$5.85\!\times\!10^{-26}$	$4.05{ imes}10^{5}$	$1.20\! imes\!10^{-41}$
450	$1.57\!\times\!10^{-26}$	$6.36{ imes}10^{-24}$	$6.56\!\times\!10^{11}$	$6.57{ imes}10^{-38}$	$9.60\! imes\!10^{-24}$	$1.04{ imes}10^{-26}$	$6.56{ imes}10^{11}$	$6.57{ imes}10^{-38}$	$1.82\! imes\!10^{-22}$	$5.51\! imes\!10^{-28}$	$6.56{\times}10^{11}$	$6.57{ imes}10^{-38}$	$1.82{ imes}10^{-22}$	$4.75\!\times\!\!10^{-26}$	$9.12{ imes}10^{5}$	2.36×10^{-41}
475	$1.63\!\times\!10^{-26}$	$5.83{ imes}10^{-24}$	7.21×10^{11}	$6.83{ imes}10^{-38}$	9.14×10^{-24}	$1.04{ imes}10^{-26}$	$7.21{ imes}10^{11}$	$6.83{ imes}10^{-38}$	1.94×10^{-22}	$4.88\!\times\!10^{-28}$	$7.21{ imes}10^{11}$	$6.83{ imes}10^{-38}$	$1.94{\times}10^{-22}$	$3.98\!\times\!10^{-26}$	$1.90{\times}10^{6}$	4.40×10^{-41}
500	$1.68\!\times\!10^{-26}$	$5.44{\times}10^{-24}$	7.85×10^{11}	$7.17{\times}10^{-38}$	8.82×10^{-24}	$1.04{ imes}10^{-26}$	7.85×10^{11}	$7.17{ imes}10^{-38}$	2.08×10^{-22}	$4.38\!\times\!10^{-28}$	7.85×10^{11}	$7.17{ imes}10^{-38}$	2.08×10^{-22}	$3.41\!\times\!10^{-26}$	$3.68{\times}10^{6}$	7.84×10^{-41}
550	$1.80\!\times\!10^{-26}$	4.91×10^{-24}	9.13×10^{11}	$8.06{ imes}10^{-38}$	8.43×10^{-24}	$1.05{ imes}10^{-26}$	$9.13{ imes}10^{11}$	$8.06{ imes}10^{-38}$	$2.38{\times}10^{-22}$	$3.70\! imes\!10^{-28}$	$9.13{ imes}10^{11}$	$8.06{ imes}10^{-38}$	$2.38{ imes}10^{-22}$	$2.66\!\times\!10^{-26}$	1.17×10^{7}	2.23×10^{-40}
600	$1.93\!\times\!10^{-26}$	$4.62{ imes}10^{-24}$	1.04×10^{12}	$9.23{ imes}10^{-38}$	$8.30 imes 10^{-24}$	$1.07{ imes}10^{-26}$	1.04×10^{12}	$9.23{ imes}10^{-38}$	$2.72 imes 10^{-22}$	$3.27\!\times\!10^{-28}$	1.04×10^{12}	$9.23{ imes}10^{-38}$	$2.72{ imes}10^{-22}$	$2.22\!\times\!10^{-26}$	$3.09{ imes}10^7$	5.57×10^{-40}
650	2.07×10^{-26}	$4.47{ imes}10^{-24}$	1.16×10^{12}	$1.07{\times}10^{-37}$	8.33×10^{-24}	$1.11{ imes}10^{-26}$	$1.16{\times}10^{12}$	$1.07{ imes}10^{-37}$	3.09×10^{-22}	2.99×10^{-28}	$1.16{\times}10^{12}$	$1.07{ imes}10^{-37}$	$3.09{\times}10^{-22}$	$1.93\!\times\!10^{-26}$	7.06×10^7	1.26×10^{-39}
200	$2.22\!\times\!10^{-26}$	4.41×10^{-24}	1.28×10^{12}	$1.25{ imes}10^{-37}$	$8.50 imes 10^{-24}$	$1.15{ imes}10^{-26}$	$1.28{ imes}10^{12}$	$1.25{ imes}10^{-37}$	3.49×10^{-22}	$2.80\!\times\!10^{-28}$	$1.28{\times}10^{12}$	$1.25{ imes}10^{-37}$	$3.49{ imes}10^{-22}$	$1.74\! imes\!10^{-26}$	1.44×10^{8}	2.63×10^{-39}
725	$2.30\!\times\!10^{-26}$	4.41×10^{-24}	1.34×10^{12}	1.36×10^{-37}	$8.62\! imes\!10^{-24}$	$1.17{ imes}10^{-26}$	1.34×10^{12}	$1.36{ imes}10^{-37}$	$3.70\! imes\!10^{-22}$	$2.73\!\times\!10^{-28}$	1.34×10^{12}	$1.36{ imes}10^{-37}$	$3.70{ imes}10^{-22}$	$1.67\!\times\!10^{-26}$	1.99×10^{8}	3.70×10^{-39}
775	$2.46\!\times\!10^{-26}$	$4.45{ imes}10^{-24}$	1.46×10^{12}	$1.60{\times}10^{-37}$	8.93×10^{-24}	$1.23{ imes}10^{-26}$	1.46×10^{12}	$1.60{ imes}10^{-37}$	$4.16\!\times\!10^{-22}$	$2.64\!\times\!10^{-28}$	1.46×10^{12}	$1.60{ imes}10^{-37}$	$4.16{ imes}10^{-22}$	$1.56\!\times\!10^{-26}$	$3.58{\times}10^{8}$	6.98×10^{-39}
800	$2.55\!\times\!10^{-26}$	$4.49{ imes}10^{-24}$	1.51×10^{12}	1.74×10^{-37}	9.11×10^{-24}	$1.26{ imes}10^{-26}$	$1.51{ imes}10^{12}$	$1.74{ imes}10^{-37}$	4.40×10^{-22}	$2.61\!\times\!10^{-28}$	$1.51{ imes}10^{12}$	$1.74{\times}10^{-37}$	$4.40{ imes}10^{-22}$	$1.53\!\times\!10^{-26}$	$4.67{ imes}10^{8}$	9.40×10^{-39}
825	$2.64\!\times\!10^{-26}$	$4.54{ imes}10^{-24}$	1.57×10^{12}	$1.89{ imes}10^{-37}$	$9.31\! imes\!10^{-24}$	$1.29{ imes}10^{-26}$	$1.57{\times}10^{12}$	$1.89{ imes}10^{-37}$	$4.65\!\times\!10^{-22}$	$2.58\!\times\!10^{-28}$	$1.57{\times}10^{12}$	$1.89{ imes}10^{-37}$	$4.65{\times}10^{-22}$	$1.50\!\times\!10^{-26}$	6.00×10^{8}	1.25×10^{-38}
850	$2.74\!\times\!10^{-26}$	$4.60{ imes}10^{-24}$	1.63×10^{12}	$2.05{ imes}10^{-37}$	$9.53 { imes} 10^{-24}$	$1.32{ imes}10^{-26}$	1.63×10^{12}	$2.05{\times}10^{-37}$	$4.91\!\times\!10^{-22}$	$2.56\!\times\!10^{-28}$	1.63×10^{12}	$2.05{ imes}10^{-37}$	$4.91{\times}10^{-22}$	$1.47\!\times\!\!10^{-26}$	$7.60{ imes}10^{8}$	1.64×10^{-38}
875	$2.83\!\times\!10^{-26}$	$4.67{ imes}10^{-24}$	1.68×10^{12}	$2.22{ imes}10^{-37}$	$9.77 imes 10^{-24}$	$1.35{ imes}10^{-26}$	$1.68{ imes}10^{12}$	$2.22{ imes}10^{-37}$	$5.18{ imes}10^{-22}$	$2.55\!\times\!10^{-28}$	$1.68{\times}10^{12}$	$2.22{ imes}10^{-37}$	$5.18{ imes}10^{-22}$	$1.45\!\times\!10^{-26}$	$9.50{ imes}10^8$	2.14×10^{-38}
006	$2.93\!\times\!10^{-26}$	4.75×10^{-24}	1.74×10^{12}	2.41×10^{-37}	1.00×10^{-23}	$1.39{ imes}10^{-26}$	1.74×10^{12}	2.41×10^{-37}	5.45×10^{-22}	$2.55\!\times\!10^{-28}$	1.74×10^{12}	2.41×10^{-37}	5.45×10^{-22}	1.44×10^{-26}	$1.17{ imes}10^9$	2.76×10^{-38}

Table S7: Termolecular rate constant k_t in $(cm^6 molecule^{-2} sec^{-1})$ for ammonia catalysed channel within temperature range 213-900K

2 Post-CCSD(T) calculation

Further, to check the reliability of the energetics obtained at MN15L/aug-cc-pVTZ level, we have performed high level (HL) ab initio calculations for the SHAT channel of AM catalyzed reaction. The HL calculation involved the following corrections:

$$\Delta E_{HL} = E_{CCSDT/CBS} + \Delta E_T + \Delta E_{(Q)}$$

1. The CCSD(T)/CBS energy has been calculated by the method proposed by Varandas and Pansini¹ using the single point energies obtained at CCSD(T)/aug-cc-pVnZ (n=T and Q) level of theory.

2. The contribution accounted for the full triple excitation (ΔE_T) at CCSDT/cc-PVDZ level of theory calculated using MRCC² code can be expressed as follows.

$$\Delta E_T = E_{CCSDT} - E_{CCSD(T)}$$

3. The contribution accounted for partial quadratic excitation (ΔE_Q) at CCSDT(Q)/ccpVDZ level of theory calculated using MRCC² code can be expressed as follows.

$$\Delta E_{(Q)} = E_{CCSDT(Q)} - E_{CCSDT}$$

Species	CCSD(T)/aug-cc-pVTZ	CCSD(T)/aug-cc-pVQZ	CCSD(T)/CBS
TS_{SHAT}	-321.4962169	-321.5778405	-321.6287234889
$\rm NH_3$	-56.4803997	-56.4954882	-56.5049875747
CH_3O^{\bullet}	-114.8846772	-114.9135429	-114.9312152234
O_2	-150.140951	-150.1786758	-150.2021958701

Table S8: Absolute energies in (Hartree) for the relevant species at CCSD(T) level of theory.

Table S9: Absolute energies in (Hartree) for the relevant species at post CCSD(T) level of theory.

species	CCSD(T)/cc-pVDZ	CCSDT/cc-pVDZ	CCSDT(Q)/cc-pVDZ
TS_{SHAT}	-321.1329874904	-321.1418482774	-321.1491973247
NH_3	-56.4026375509	-56.4029140609	-56.4032558481
CH_3O^{\bullet}	-114.7550722855	-114.7557353041	-114.7562151674
O_2	-149.9856931155	-149.9858841529	-149.9877946909

3 Convergence parameters

The grid size used for all the structure is (grid=ultrafine) having 99 radial shells and 590 angular points per shell and tight SCF convergence criteria used for the geometry optimization of all the species. The others convergence parameters has been listed below.

Table S10: Convergence threshold values for the optimized geometry for all the species.

Parameters	Threshold values (a.u)	
Max-Force	0.00045	
Rms-force	0.0003	
Max-displacement	0.0018	
Rms-displacement	0.0012	

Figure S1: Gibbs free energy profile for $CH_3O^{\bullet}+O_2$ reaction in presence of AM calculated at MN15L/aug-cc-pVTZ level, where $M=CH_3O^{\bullet}$, $O=O_2$, $AM=NH_3$, $FH=CH_2O$, $PO=HO_2$; M-O, M-AM and AM-O are pre-reactive complexes

Figure S2: Gibbs free energy profile for $CH_3O^{\bullet}+O_2$ reaction in presence of FA calculated at MN15L/aug-cc-pVTZ level, where $M=CH_3O^{\bullet}$, $O=O_2$, FA=HCOOH, FH=CH₂O, PO= HO₂; M-O, M-FA and FA-O are pre-reactive complexes

Figure S3: Reaction scheme for the uncat $CH_3O^{\bullet} + O_2$ reaction, at the geometries obtained at the MN15-L/aug-cc-pVTZ level (the bond lengths are in angstrom)

References

- (1) Varandas, A.; Pansini, F. J. Chem. Phys 2014, 141, 224113.
- (2) Kállay, M.; Rolik, Z.; Csontos, J.; Ladjánszki, I.; Szegedy, L.; Ladóczki, B.; Samu, G.; Petrov, K.; Farkas, M.; Nagy, URL: http://www.mrcc. hu, accessed August 26th 2016,