Supporting Information

A Computational Exploration on the 1D TiS₂(en) Nanostructure for

Lithium Ion Batteries

Chun-Hao Huang, Chun-Chih Chang, Elise Y. Li*

Department of Chemistry, National Taiwan Normal University, Taipei, 11677,

Taiwan

Li _x TiS ₂ (en)	Li configuration	a (Å)	b (Å)	c (Å)	Rüdorff stage
0 (exp) ⁽¹⁾		18.44	18.44	9.014	
0		18.58	18.41	9.264	
0.06		18.69	18.75	9.277	
0.11	(3c, 6a)	18.71	18.79	9.281	
0.16	(6a, 6b, 6c)	18.81	18.84	9.280	6
0.33	(2a,2b,2c,5a,5b,5c)	18.91	18.91	9.261	3
0.5	(1c,2a,2b,2c,4a,4c,5a,5b,5c)	19.03	19.04	9.260	two-phase (2+3)
0.66	(2a,2b,2c,5a,5b,5c) ^a	19.22	19.22	9.214	2
0.83	(2a,2b,5b) ^a	19.35	19.35	9.171	two-phase (1+2)
1		19.61	19.55	8.969	1
1 (exp) ⁽²⁾		19.11	19.11	8.985	1

Table S1. Theoretically optimized geometry parameters of the $Li_xTiS_2(en)$ structures with different lithium concentrations in the lowest-energy configurations. The geometry parameters for the experimental XRD measurements are also listed.

^{a)}The labels of the Li "holes" in the system.

Materials	Lithium diffusion barrier (eV)
Si thin film ⁽³⁾	0.88
h-BAs ⁽⁴⁾	0.522
$\mathrm{Ti}\mathbf{S}_{2}^{(5)}$	~0.41
SnSe sheet ⁽⁶⁾	0.36
$PC_{6}^{(7)}$	0.34
Graphite ⁽⁸⁾	~0.34
2D YS ₂ monolayer ⁽⁹⁾	0.33
Graphene ⁽¹⁰⁾	0.327
NiPS ₃ ⁽¹¹⁾	0.279
TiS ₂ (en) (this work)	0.27
$MoS_2^{(12)}$	0.25
VS ₂ ⁽¹²⁾	0.22
$\text{CoO}_2^{(13)}$	0.21
FePO ₄ ⁽¹³⁾	0.16
Be ₂ C monolayer ⁽¹⁴⁾	0.11
Trigonal Mo ₂ B ₂ monolayer ⁽¹⁵⁾	0.023

 Table S2. Lithium diffusion barriers in selected electrode materials.

Figure S1. Top view of the lowest-energy configurations under different lithium concentrations. The asterisk marks the configuration of the Li "holes" in the system.

Figure S2. Relative energies of 8 different arrangements in the x=0.16 system.

Figure S3. Geometry parameter variation and volume expansion of $Li_xTiS_2(en)$ under different lithium concentrations

Figure S4. Image of the P2 diffusion pathway of a certain lithium ion in $Li_{0.06}TiS_2(en)$.

References

- (1) Y.-H. Liu, S. H. Porter and J. E. Goldberger, J. Am. Chem. Soc. 2012, 134, 5044.
- (2) T. Li, Y.-H. Liu, B. Chitara and J. E. Goldberger, J. Am. Chem. Soc. 2014, 136, 2986.
- (3) B. Peng, F. Cheng, Z. Tao and J. Chen, J. Chem. Phys. 2010, 133, 034701
- (4) N. Khossossi, A. Banerjee, Y. Benhouria, I. Essaoudi, A. Ainane and R. Ahuja, *Phys. Chem. Chem. Phys.* 2019, 21, 18328-18337.
- (5) A. Van der Ven, J. C. Thomas, Q. Xu, B. Swoboda and D. Morgan, *Phys. Rev.* B 2008, 78, 104306.
- (6) Y. Zhou, J. Mater. Chem. A 2016, 4, 10906-10913.
- (7) J. Zhang, L. Xu, C. Yang, X. Zhang, L. Ma, M. Zhang and J. Lu, *Appl. Surf. Sci.* 2020, 145493.
- (8) K. Nobuhara, H. Nakayama, M. Nose, S. Nakanishi and H. Iba, *J. Power Sources* **2013**, *243*, 585-587.
- (9) Y. Guo, T. Bo, Y. Wu, J. Zhang, Z. Lu, W. Li, ... and B. Wang, *Solid State Ion.* 2020, 345, 115187.
- (10) C. Uthaisar and V. Barone, Nano letters, 2010, 10, 2838-2842.
- (11) Z. Ma, F. Wang, M. Dou, Q. Yao, F. Wu and E. Kan, *Applied Surface Science*, **2019**, *495*, 143534.
- (12) W. Li, Y. Yang, G. Zhang and Y. W. Zhang, Nano Lett. 2015, 15, 1691-1697.
- (13) S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim and G. Ceder, *Energy Environ. Sci.* 2011, *4*, 3680-3688.
- (14) K. H. Yeoh, K. H. Chew, Y. Z. Chu, T. L. Yoon, Rusi and D. S. Ong, J. Appl. Phys., 2019, 126, 125302.
- (15) T. Bo, P. F. Liu, J. Zhang, F. Wang and B. T. Wang, *Phys. Chem. Chem. Phys.* **2019**, *21*, 5178-5188.