Theoretical research on oxidation mechanism of doped carbon based catalysts for oxygen reduction reaction

Na Yang, Lanlan Peng, Li Li*, Jing Li, Zidong Wei*

The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing 400044 *Corresponding author's E-mail: <u>liliracial@cqu.edu.cn</u> (Li); <u>zdwei@cqu.edu.cn</u> (Wei),

<u>Tel: +</u>86 2365678945

_	$\Delta g^{exp}_{H_20}$	E^{DFT}	ZPE	$T\Delta S$
H ₂ O(I)	-2.46 (I)	-14.22	0.57	0.22
				0.67 (0.035bar)
H ₂ (g)		-6.76	0.27	040
CO(g)	-	-14.80	0.13	0.61
CO ₂ (g)	-	-22.98	0.31	0.66
*ОН	-	-	0.39	0.07
*0	-	-	0.09	0.05
*00H	-	-	0.46	0.16
*C	-	-	0.14	-
*СОН	-	-	0.57	-
*CO	-	-	0.25	-
*COOH	-	-	0.65	-
*CO2	-	-	0.34	-

Table S1. Relevant thermodynamic data of gas-phase species and adsorbents, at T=298 K and P=1 bar. DFT total energies, zero-point energy and entropy, the entropy of H_2O is calculated at 0.035 atm, which corresponds to the vapor pressure of liquid water. ^{S1} All values are given in eV.

Figure S1. Four kinds of doped-graphene models: (a) graphitic-N doped graphene (Ng-G), (b) S doped graphene (S-G), (c) pyridinic-N doped graphene (Np-G) and (d) P doped graphene (P-G). The grey, white, blue, yellow, red and pink spheres represent the C, H, N, S, O and P atoms, respectively.

Figure S2. The different energy level of *C of the four doped-graphene relative to pure graphene ($\Delta G = \Delta G^{doped} - graphene \atop *C - \Delta G^{pure} - graphene \atop *C$, pure graphene with $\Delta G = 0$). And the more negative the values are, the more stability of doped-graphene structure.

Table S2. The adsorption energies (ΔE_{ads}), adsorption free energies (ΔG_{ads}) and bond lengths (d_{O-O}) of O₂ molecular on the investigated models.

	Ng-G	Np-G	S-G	P-G
ΔE_{ads} /eV	-1.84	-1.72	-1.54	-2.11
$\Delta G_{ads}/eV$	-1.14	-1.03	-0.85	-1.42
d _{o-o} /Å	1.40	1.36	1.38	1.37

Figure S3. The calculated free energy diagram of carbon sites at zero potential ($U^{RHE} = 0 V vs. RHE$). (a) dissociative mechanism and (b) associative mechanism of ORR.

Figure S4. The -ICOHP curve of the four doped-graphene configuration.

Figure S5. The *CO (a-d), *COH (e-h) and $*CO_2$ (i-l) adsorption configurations on the four dopedgraphene surface.

For a given electrocatalytic process, the exchange current density $(^{j_0})$ can be theoretically computed as follows equation:

$$j_0 = nFk^0 C^{1-\alpha} C_R^{\alpha}$$

Here, for the reaction $O_2(oxidant, 0) + H_2O + 4e^- \rightarrow 4OH^-(reductant, R)$, the *n*, *F* and k^0 are the electron transfer number, the Faraday constant and the standard rate constant, respectively. The α is transfer coefficient, and which as a measure the symmetry of the potential energy surface could range from 0 to 1. C_O and C_R is the reacting surface concentration of O and R, respectively. Simultaneously, the bulk concentrations (adjacent to the reacting surface) of C_O^* and C_R^* can be related to K at the equilibrium:

$$K = \frac{C_R}{C_0} = \frac{C_R^*}{C_0^*} = exp\left[-\frac{1}{k_B T} \left(\Delta G_{PDS}(U^0)\right)\right]$$

Here, $\Delta G_{PDS}(U^0)$ is the maximal free energy change value among all the element reaction steps at the ORR equilibrium potential ($U^0 = 1.23 V$ vs RHE). And the coverage ϑ of reductant R can be expressed by: $\theta = \frac{C_R}{C_{total}} = \frac{K}{1+K}$

Here, $C_{total} = C_R + C_0$ is total number of surface active sites. Therefore, the exchange current density can be theoretically computed as follows equation:

$$j_0 = nFk^0 C_{total}[(1-\theta)^{1-\alpha}\theta^{\alpha}]$$

Where the α value and pre-factor $A=nFk^0C_{total}$ could be obtained by fitting the experimental data of the exchange current densities. ⁵²

Table S3. ORR exchange current density of experimental ^{S2} and theory of the four doped-graphene before and after carbon oxidation.

	Catalyst	ΔG_{PDS} (eV)	<i>j₀^{theory}</i> (A/cm²)	<i>j₀^{exp}</i> (A/cm ²) ¹
	Pt	0.45 ²	3×10 ⁻⁷	4.8×10 ⁻⁷
	Ng-G	0.54	6.3×10 ⁻⁸	3.0×10 ⁻⁹
Initial	S-G	0.56	3.8×10 ⁻⁸	3.5×10 ⁻¹²
	P-G	0.52	7.8×10 ⁻⁸	7.7×10 ⁻¹¹
	Np-G	1.47	7.1×10 ⁻¹⁶	
	Ng-G	1.02	4.5×10 ⁻¹²	
Partial	S-G	1.64	2.6×10 ⁻¹⁷	
oxidation	P-G	0.47	2.0×10 ⁻⁷	
	Np-G	1.52	2.7×10 ⁻¹⁶	
	Ng-G	0.90	4.7×10 ⁻¹¹	
Complete	S-G	1.53	2.2×10 ⁻¹⁶	
oxidation	P-G	0.87	8.4×10 ⁻¹¹	
	Np-G	0.94	2.1×10 ⁻¹¹	

Reference

S1. Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. *J Phys Chem B* **2004**, *108* (46), 17886-17892.

S2. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. *Journal of the American Chemical Society* **2014**, *136* (11), 4394-403