Supporting Information

Hydrogenated ZnIn₂S₄ microspheres: boosting photocatalytic

hydrogen evolution by sulfur vacancy engineering and mechanism

insight

Yanze Wang, Da Chen^{*}, Laishun Qin^{*}, Junhui Liang, Yuexiang Huang

College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, Zhejiang, China Email: dchen_80@hotmail.com; qinlaishun@cjlu.edu.cn

Samples	A ₁	τ_1/ns	A ₂	τ_2/ns	A ₃	τ_3/ns	τ_{ave}/ns
H-ZIS	0.39	18.25	0.50	42.60	0.54	86.26	67.38
ZIS	0.25	25.2955	0.33	47.08	0.42	19.58	35.01

Table S1. TRPL decay parameters of the pristine ZIS and H-ZIS.

Fig. S1. The stainless steel hydrogenation reactor with a height of 93.5 mm and a diameter of 8.5

mm

Fig. S1

Fig. S2. Photocatalytic D₂O splitting over the H-ZIS sample under visible light: (A) the GC result of photocatalytic D₂ evolution; (B) the GC result of photocatalytic H₂ evolution

To test whether any hydrogen molecules were desorbed from the surface of the H-ZIS sample during the photocatalytic process, we used the H-ZIS sample to perform hydrogen evolution test in isotope D_2O , and used high-resolution Gas Chromatography Mass Spectrometer (GCT Premier, GC-MS) to detect the D_2 . As shown in Fig. S2(A), after every 1 hour of sampling, a peak associated with D_2 was detected at a retention time of about 2.7 min, and with the increase of time, the D_2 amount produced from the photocatalytic D_2 evolution was also increased. This shows that the H-ZIS exhibited the photocatalytic activities in both D_2O and H_2O , and the D_2 or H_2 production amount was increased with the irradiation time. As a control, we also tested the amount of H_2 produced by H-ZIS in D_2O , and the results are shown in Fig. S2(B). It can be seen that no peak appeared during the whole retention time, indicating that H_2 could not be generated by H-ZIS in D_2O and n_2 was desorbed from the H-ZIS surface during the photocatalytic process. This also proves that the adsorption of H_2 on the H-ZIS surface during hydrogenation treatment could be negligible.

Fig. S3. XPS spectra of pristine ZIS and H-ZIS: (A) O 1s, (B) C 1s, and(C) N 1s

To further investigate the influence of hydrogenation process on the chemical composition of ZIS, the high-resolution XPS spectra of O 1s, C 1s and N 1s were also examined, as shown in Fig. S3. The peaks corresponding to O 1*s* and C 1*s* were detected at 531.78 and 284.28 eV (Fig. S3(A) and (B)), respectively, for both the pristine ZIS and H-ZIS samples, and there were no changes in peak position and peak intensity between these two samples, indicating that the peaks for O 1s and C 1s could be ascribed to adventitious oxygen and carbon during the XPS measurement. Meanwhile, the peaks at about 400.00 eV corresponding to N 1*s* was negligible for both the pristine ZIS and H-ZIS samples (Fig. S3(C)). These results confirm that the hydrogenation process would not introduce other impurities (such as: O, C, N) into the pristine ZIS.

Fig. S4. (A) Photocatalytic H₂ evolution over the pristine ZIS for 5th cycles under visible light illumination; (B) XRD pattern of the pristine ZIS measured before and after photocatalytic cycling experiment

Fig. S5

Fig. S5. The survey XPS spectra of H-ZIS measured before and after photocatalytic cycling experiment