Supplementary Information

Pressure-Induced Metallicity and Piezoreductive Transition of Metal-Centers in Conductive 2-

Dimensional Metal-Organic Frameworks

Khoa N. Le^a and Christopher H. Hendon*a

^{a.} Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97401, USA.

Bond lengths for the monolayers:

Table 1	. Ni ₃ (HIB) ₂	bond lengths	at different	hydrostatic pressure.
---------	--------------------------------------	--------------	--------------	-----------------------

	Bond Length (Å)					
Pressure (KB)	Ni-N	N-C	N-H	C-C		
42.83	1.72895	1.29975	1.01484	1.34831		
39.67	1.73125	1.30184	1.01541	1.35169		
36.68	1.73366	1.30396	1.01593	1.35509		
33.78	1.73639	1.30614	1.01644	1.35846		
31.04	1.73938	1.30815	1.01683	1.36205		
28.4	1.74247	1.31028	1.01733	1.36545		
25.85	1.74572	1.31242	1.01765	1.36918		
23.4	1.74918	1.31452	1.01806	1.37288		
21.08	1.75291	1.31668	1.01842	1.37664		
18.89	1.75689	1.31884	1.01877	1.38028		
16.75	1.76102	1.321	1.01907	1.38412		
14.68	1.76529	1.3232	1.01936	1.38799		
12.72	1.76989	1.32531	1.01954	1.39191		
10.83	1.77476	1.32756	1.0198	1.3957		
9.01	1.77993	1.32969	1.02009	1.39966		
7.28	1.78519	1.33179	1.0203	1.40387		
5.62	1.79072	1.33403	1.02051	1.40785		
4.04	1.79654	1.33609	1.02068	1.41193		
2.53	1.80257	1.33831	1.02082	1.41625		
1.07	1.8088	1.34037	1.02106	1.42024		
-0.3	1.8152	1.34243	1.02123	1.42492		
-1.63	1.82215	1.34447	1.02138	1.42907		
-2.88	1.82923	1.34666	1.02148	1.43289		
-4.08	1.8365	1.34854	1.02163	1.43729		
-5.19	1.84411	1.35057	1.02177	1.44107		
-6.26	1.85194	1.3524	1.02195	1.44525		
-7.27	1.86002	1.35426	1.02202	1.44971		
-8.22	1.86864	1.35605	1.02223	1.45358		
-9.12	1.87756	1.35785	1.02227	1.45778		
-9.94	1.88667	1.35966	1.02239	1.46164		
-10./1	1.896	1.36126	1.02247	1.465/1		
-11.45	1.90573	1.36282	1.02261	1.46986		
-12.11	1.91591	1.3643	1.02275	1.47389		
-12.72	1.92647	1.36561	1.02282	1.4///4		
-13.28	1.93706	1.30/01	1.02294	1.481/4		
-13.8	1.94816	1.36823	1.02302	1.48531		
-14.20	1.95973	1.30925	1.02311	1.48869		
-13.01	1.99828	1.35/0	1.0252	1.48/30		
-9.98	2.054	1.33/53	1.02706			
-10.29	2.00/32	1.33/90 1.22021	1.02/09	1.4014 1.4000		
-10.59	2.00008	1.33831	1.02/05	1.46395		

	,		Bond Length (Å)		
Pressure (kB)	Ni-N	N-C	C-H	N-H	C-C
30.73	1.71414	1.2967	1.08209	1.0166	1.33
28.47	1.71614	1.29885	1.08285	1.017	1.33332
26.33	1.71838	1.30086	1.08359	1.01733	1.33641
24.27	1.721	1.30304	1.08433	1.01768	1.33955
22.29	1.72387	1.30527	1.08507	1.01806	1.34275
20.39	1.72712	1.30757	1.08575	1.01841	1.34596
18.55	1.7307	1.30992	1.08641	1.01877	1.34916
16.8	1.73446	1.31224	1.08694	1.01906	1.35253
15.13	1.73873	1.31464	1.08759	1.0194	1.356
13.53	1.74303	1.31702	1.08821	1.01969	1.35929
11.98	1.74797	1.31935	1.08879	1.02	1.36263
10.52	1.75301	1.32163	1.08931	1.02026	1.36603
9.11	1.75823	1.32423	1.08985	1.02048	1.36936
7.74	1.76396	1.32657	1.09041	1.02071	1.37302
6.45	1.76998	1.32898	1.09092	1.02095	1.37638
5.21	1.77613	1.33144	1.09147	1.02116	1.37994
4.02	1.78288	1.33389	1.09187	1.02135	1.38365
2.89	1.78965	1.33633	1.0923	1.02152	1.38729
1.81	1.79683	1.33886	1.09274	1.02172	1.3908
0.78	1.80438	1.34124	1.09312	1.02192	1.39428
-0.2	1.81235	1.34363	1.09355	1.02213	1.39778
-1.13	1.82064	1.34604	1.09391	1.02227	1.40136
-2.01	1.82908	1.34828	1.09424	1.02235	1.40462
-2.84	1.83836	1.35068	1.09455	1.02253	1.40829
-3.64	1.84773	1.35303	1.09489	1.02264	1.41189
-4.38	1.85722	1.35512	1.09516	1.02278	1.41569
-5.1	1.86764	1.35739	1.0954	1.0229	1.41907
-5.76	1.87887	1.35948	1.09574	1.02309	1.42244
-6.37	1.88986	1.36141	1.09591	1.02316	1.42604
-6.93	1.90123	1.36335	1.09613	1.02332	1.42959
-7.47	1.91383	1.3652	1.09638	1.02339	1.43318
-7.97	1.92652	1.36685	1.09653	1.0235	1.4362
-8.42	1.94051	1.36839	1.09668	1.02362	1.43947
-8.84	1.95584	1.36995	1.09675	1.02367	1.44247
-9.19	1.9719	1.37126	1.09691	1.02378	1.44541
-9.52	1.98803	1.37247	1.09704	1.02389	1.44819
-9.81	2.0055	1.3733	1.09715	1.02398	1.45086
-10.05	2.02341	1.37411	1.09721	1.0241	1.45354
-10.24	2.04361	1.37472	1.09731	1.02415	1.45584
-10.38	2.06541	1.37501	1.09743	1.02427	1.45769

Table 2. Ni₃(HITP)₂ bond lengths at different hydrostatic pressure.

Figure S1. A structural comparison of both (a) Ni₃(HITP)₂ and (b) Ni₃(HIB)₂ at various external pressure.

Example of unit cell used for the pressure:

Figure S2. $Ni_3(HIB)_2$ unit cell at lattice constant 1.0. The vacuum lay along the c-direction (left) and the monolayer is parallel to the ab-plane (right).

Figure S3. $Ni_3(HITP)_2$ unit cell at lattice constant 1.0. The vacuum lay along the c-direction (left) and the monolayer is parallel to the ab-plane (right).

PBEsol functional compare to GGA functional:

For this study, the most important feature is the closing of the band gap and shift in energy of the Ni-N orbital that cause the change in magnetic properties. For this reason, we chose to use the PBEsol functional for all calculation to minimize computation cost. Hybrid functional such as HSE06 might produce higher quality band structures but very expensive and only contain similar information that can be capture by calculation at the GGA level (Figure 3). As show below, both structure for Ni₃(HITP)₂ displace a band gap correspond to a semi-conductive material and no band gap for Ni₃(HIB)₂. Both functionals are consistence with one another, hence PBEsol is sufficient for this study.

Figure S4. Electronic band structure and density of state of Ni_3 (HITP)₂ (left) and Ni_3 (HIB)₂ (right) computed by two different functionals: (a) HSE06 and (b) PBEsol for Ni_3 (HITP)₂; (c) HSE06 and (d) PBEsol for Ni_3 (HIB)₂.

Figure S5. A structural (a) and energetic (b) comparison of both $Ni_3(HITP)_2$ and $Ni_3(HIB)_2$ at various lattice constant. The inset graphs highlight the Ni^{2+} piezoreduction upon expansion of the $Ni_3(HIB)_2$ lattice.