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1 Pourbaix diagram thermodynamics

In this section, we provide additional information on the thermodynamics of the Pourbaix diagram
methodology described in the main text. To generate a Pourbaix diagram in our formalism, we begin
with “entries” as termed in pymatgen, which consist of a composition and an attached energy. In
the case of the Pourbaix diagram, the energy we attach to the composition is the Gibbs free energy
of formation for the given compound. From this energy, one can form the free energy at a given
potential, Ψ(E,pH), via the Pourbaix potential formalism, as derived in prior reports1,2. This may be
expressed by eq. (1),

Ψ(E, pH) =
1

∑NM

(
G0

f +0.0591log(c)−NOµH2O −0.0591(2NO −NH) pH − (2NO −NH +Q)E
)

(1)

where E is the electrochemical potential, pH is the pH, NO is the number of oxygen atoms in the
chemical formula, NH is the number of hydrogen atoms in the chemical formula, Q is the charge
associated with the composition, and c is the concentration of the species for aqueous ions. The
free energy is normalized by NM, which represents the number of atoms in the compound excluding
oxygen and hydrogen. This is essentially the formation energy of the species at a variable chemical
potential of protons and electrons, as expressed in the scaling of E and pH. The Pourbaix potential is
a plane in E-pH space for each species under consideration.

For each species to be considered in the Pourbaix diagram, one must find regions of minimal Pourbaix
potential for all species subject to the E-pH scaling. Since they are linear, these regions may be
efficiently found by determining the halfspace intersection of the planes represented by eq. (1).

For multi-element entries, one must determine the minimal combination of entries, rather than simply
the minimal entries. These combinations are subject to a composition constraint3, that is the Pourbaix
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diagram is computed at a fixed ratio of non-oxygen or hydrogen elements. The Pourbaix potential for
these combinations of species, termed MultiEntries, is expressed as an ideal mixture of the species
and their associated Pourbaix potentials, as shown in eq. (2),

Ψmulti (E, pH,wi) = ∑
i

wiΨi (E, pH) (2)

where wi are the normalized weights of each of the single-entry Pourbaix potentials (Ψi) that fulfill
the composition constraint. The regions of the Pourbaix diagram for multiple elements are similarly
found by minimizing this potential over all possible valid stoichiometric combinations of species.

To achieve minimization of the Pourbaix potential for a multi-element diagram, appropriate stoichio-
metric mixtures of single species (which may have one or more elements) must be enumerated. Sto-
ichiometric coefficients which minimize the formation energy of mixtures are generally determined
in the canonical phase diagram, i.e. by finding the convex hull in E f

0 − x1 − x2 − ...− xn space, where
E f

0 is the formation energy per atom and xn are the fractional compositions of constitutive elements.
For example, the convex hull and its simplices in E f

0 − xO space form the species and the tie lines
between them in the phase diagram of the Fe-O chemical system sketched in fig. S1. In the case of
higher-dimensional diagrams, the simplices will be triangles (3-D), tetrahedra (4-D), etc.

In addition, to find all of the possible energy-minimizing combinations of single entries subject to
variable chemical potential of the constitutive reactants (i.e. Fe and O in fig. S1), one may determine
the hull without those reference points. Phases may appear or be absent from the hull when one
fixes the chemical potentials, but the analysis without the endpoints will reveal all possibilities for the
hull. In addition, one may include arbitrary reactants for the formation of these phases, for example,
H+ and e−, in order to allow for the variable chemical potential of arbitrary species. H+ and e− are
constitutive reactants for all species in the Pourbaix diagram, and the diagrams shown in the main
text’s 3-D hull figure correspond to these.
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Figure S1 Schematic demonstrating how the convex hull reveals stable combinations in composition space, and how
removal of convex hull endpoints allows for determination of "inner" convex hull with all possible phases and phase
mixtures enumerated for variable chemical potentials of endpoint species.

When valid entry combinations are determined using the simplices of the convex hull, the halfspace
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intersection of the resultant MultiEntries may be constructed in the same manner as that of a single
element PourbaixDiagram, since the scaling of the overall formation energy of the mixture is still
linear.

2 Algorithmic benchmarking
For additional clarity, we provide a flow diagram of the old and new Pourbaix diagram generation
algorithms in fig. S2. Benchmarks for the new algorithm computed on a 2016 MacBook Pro with an
2 GHz Intel i5 processor are shown in table S1. The contents of a script used for these benchmarking
are provided below and serve as an example of how to use the Pourbaix diagram generation method
in the code:

from pymatgen import MPRester
import time
from pymatgen . a n a l y s i s . pourbaix_diagram import PourbaixDiagram , \

ELEMENTS_HO, Pourba i xP lo t t e r

# Set up r e s t e r
mpr = MPRester () # Enter m a t e r i a l s p r o j e c t API key i f not c o n f i g u r e d
entry = mpr . g e t _ e n t r i e s ( "mp−1215061 " )[0]
composit ion = entry . composit ion
comp_dict = { s t r ( key ) : value for key , value in composit ion . i tems ()

i f key not in ELEMENTS_HO}

# Get data
f e t c h _ s t a r t = time . time ()
data = mpr . ge t_pourba i x_en t r i e s ( l i s t ( comp_dict . keys ( ) ) )
f e t ch_e lapsed = time . time () − f e t c h _ s t a r t
print ( " Fetch takes {} seconds " . format ( f e t ch_e lapsed ))
ent ry = [ entry for entry in data i f entry . en t ry_ id == "mp−1215061 " ][0]

# Cons t ru c t pourbaix diagram
c o n s t r u c t _ s t a r t = time . time ()
pbx = PourbaixDiagram ( data , comp_dict=comp_dict , f i l t e r _ s o l i d s=Fa l se )
cons t ruc t_e l apsed = time . time () − c o n s t r u c t _ s t a r t
p l t = Pourba i xP lo t t e r ( pbx ) . p l o t _ e n t r y _ s t a b i l i t y (

entry , label_domains=Fa l se )
p l t . s a v e f i g ( " pourbaix . png " )
print ( " Const ruc t takes {} seconds " . format ( cons t ruc t_e l apsed ))
# P l o t
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Figure S2 Flowchart representing old (left) and new (right) Pourbaix diagram construction algorithms - In the left
flow diagram, the red box representing multi-entry combination candidate generation is the primary bottleneck, and
the green sections replacing this in the right diagram are significantly faster.
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New algorithm Old algorithm
Formula or chemsys mp-id Iterations Elapsed time (s) Iterations Elapsed time (s)

BiVO4 mp-25122 2.2×102 1.0 5.0×104 3.4×101

SrIrO3 mp-17097 1.0×102 0.8 5.0×103 4.0
Cr2FeO4 mp-24900 2.8×102 1.0 2.9×104 2.1×101

MoS2 mp-1434 1.9×102 0.9 1.9×104 1.4×101

FeCN2 mp-567933 6.2×102 1.5 4.6×107 2.9×104

ZnNiAs2O7 mp-1042795 1.1×103 1.4 1.1×106 8.4×102

TiAl2Zn mp-1217109 8.0×102 1.4 6.0×106 5.5×103

Ni(C2N3)2 mp-22405 5.9×102 1.4 1.6×107 1.4×104

BaSr7Fe7CoO24 mp-1075935 3.5×103 4.3 4.1×109 3.1×106 *
Al-Mn-Fe-Cu-Mg – 2.4×104 2.4×101 7.0×1012 5.3×109 *

Ba2NaTi2MnRe2Si8HO26F mp-1215061 1.4×105 4.2×102 1.2×1019 1.4×1014 *

Table S1 Performance Metrics for Pourbaix Algorithms - Starred (*) values indicate estimated evaluation time based
on number of iterations and average iteration rate from 2 and 3-element runs.
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