## **OBCN** isomerization, noble gas inserting compounds of identical

## valence electron number species: stability and bonding

Mei Wen,  $^{\rm a}$  Zhuo Zhe Li  $^{\rm b}$  and An Yong Li  $^{\rm *c}$ 

School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R.China

## **Electronic Supplementary Information**



**Fig. S1** IRC plot for the conversion of BCNO  $\rightarrow$  OBCN calculated at the MP2/aug-cc-pVTZ/aug-cc-pVTZ-PP level.



Fig. S2 IRC plot for the conversion of BOCN  $\rightarrow$  OBCN calculated at the MP2/aug-cc-pVTZ/aug-cc-pVTZ-PP level.



**Fig. S3** IRC plot for the conversion of BONC  $\rightarrow$  OBNC calculated at the MP2/aug-cc-pVTZ/aug-cc-pVTZ-PP level.



Fig. S4 IRC plots for the conversion of OBNC  $\rightarrow$  OBCN calculated at the MP2/aug-cc-pVTZ/aug-cc-pVTZ-PP level.



**Fig. S5** IRC plots for the conversion of OBXeNC  $\rightarrow$  OBCN + Xe and OBXeCN  $\rightarrow$  OBNC + Xe calculated at the B3LYP-D3/aug-cc-pVTZ/aug-cc-pVTZ-PP level.



**Fig. S6** IRC plots for the conversions of OBRnNC  $\rightarrow$  OBCN + Rn and OBRnCN  $\rightarrow$  OBNC + Rn calculated at the B3LYP-D3/aug-cc-pVTZ/aug-cc-pVTZ-PP level.

|                                              | C (                                                                                     | 0                                                                                   | Ng                                                                                           | C N                                                                                             |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Kr                                           | 1.145                                                                                   | 2.698                                                                               | 1.801                                                                                        | 1.179                                                                                           |  |
| Xe                                           | 1.146                                                                                   | 2.809                                                                               | 1.975                                                                                        | 1.179                                                                                           |  |
| Rn                                           | 1.146                                                                                   | 2.801                                                                               | 2.063                                                                                        | 1.179                                                                                           |  |
|                                              |                                                                                         |                                                                                     |                                                                                              |                                                                                                 |  |
|                                              | O B                                                                                     | Ng                                                                                  | (                                                                                            | <b>Si</b>                                                                                       |  |
| Kr                                           | 1.207                                                                                   | 1.894                                                                               | 2.471                                                                                        | 1.546                                                                                           |  |
| Xe                                           | 1.209                                                                                   | 2.082                                                                               | 2.545                                                                                        | 1.548                                                                                           |  |
| Rn                                           | 1.210                                                                                   | 2.170                                                                               | 2.564                                                                                        | 1.548                                                                                           |  |
|                                              |                                                                                         |                                                                                     |                                                                                              |                                                                                                 |  |
|                                              | 0-(                                                                                     | В                                                                                   | Ng                                                                                           |                                                                                                 |  |
| Kr                                           | 1.207                                                                                   | 1.895                                                                               | 2.906                                                                                        | 1,114                                                                                           |  |
| Xe                                           | 1 208                                                                                   | 2 075                                                                               | 2,998                                                                                        | 1.114                                                                                           |  |
| Rn                                           | 1 209                                                                                   | 2 156                                                                               | 2 967                                                                                        | 1 1 1 4                                                                                         |  |
| IXII                                         | 1.205                                                                                   | 2.150                                                                               | 2.501                                                                                        | 1.114                                                                                           |  |
|                                              |                                                                                         |                                                                                     |                                                                                              |                                                                                                 |  |
|                                              |                                                                                         |                                                                                     | -                                                                                            |                                                                                                 |  |
|                                              | <mark>s</mark> —(                                                                       | C                                                                                   | Ng                                                                                           | N Si                                                                                            |  |
| Kr                                           | <b>S</b><br>1.522                                                                       | C 2.478                                                                             | Ng<br>1.832                                                                                  | N Si<br>1.595                                                                                   |  |
| Kr<br>Xe                                     | S<br>1.522<br>1.522                                                                     | 2.478<br>2.552                                                                      | Ng<br>1.832<br>1.984                                                                         | N Si<br>1.595<br>1.595                                                                          |  |
| Kr<br>Xe<br>Rn                               | S<br>1.522<br>1.522<br>1.522                                                            | 2.478<br>2.552<br>2.575                                                             | Ng<br>1.832<br>1.984<br>2.075                                                                | N Si<br>2 1.595<br>4 1.595<br>5 1.595                                                           |  |
| Kr<br>Xe<br>Rn                               | S<br>1.522<br>1.522<br>1.522                                                            | 2.478<br>2.552<br>2.575                                                             | Ng<br>1.832<br>1.984<br>2.075                                                                | N Si<br>2 1.595<br>4 1.595<br>5 1.595                                                           |  |
| Kr<br>Xe<br>Rn                               | S<br>1.522<br>1.522<br>1.522                                                            | C<br>2.478<br>2.552<br>2.575<br>C                                                   | Ng<br>1.832<br>1.984<br>2.075<br>Ng                                                          | N Si<br>2 1.595<br>4 1.595<br>5 1.595<br>5 1.595                                                |  |
| Kr<br>Xe<br>Rn<br>Kr                         | S<br>1.522<br>1.522<br>1.522<br>N<br>1.177                                              | C<br>2.478<br>2.552<br>2.575<br>C<br>1.824                                          | Ng<br>1.832<br>1.984<br>2.075<br>Ng<br>2.304                                                 | N Si<br>1.595<br>1.595<br>1.595<br>0 Si<br>1.550                                                |  |
| Kr<br>Xe<br>Rn<br>Kr<br>Xe                   | S<br>1.522<br>1.522<br>1.522<br>N<br>1.177<br>1.177                                     | C<br>2.478<br>2.552<br>2.575<br>C<br>1.824<br>2.005                                 | Ng<br>1.832<br>1.984<br>2.075<br>Ng<br>2.304<br>2.389                                        | N Si<br>2 1.595<br>4 1.595<br>5 1.595<br>0 Si<br>1.550<br>1.551                                 |  |
| Kr<br>Xe<br>Rn<br>Kr<br>Xe<br>Rn             | S<br>1.522<br>1.522<br>1.522<br>N<br>1.177<br>1.177<br>1.177                            | C<br>2.478<br>2.552<br>2.575<br>C<br>1.824<br>2.005<br>2.097                        | Ng<br>1.832<br>1.984<br>2.075<br>Ng<br>2.304<br>2.389<br>2.425                               | N Si<br>2 1.595<br>3 1.595<br>3 1.595<br>0 Si<br>1.550<br>1.551<br>1.550                        |  |
| Kr<br>Xe<br>Rn<br>Kr<br>Xe<br>Rn             | S<br>1.522<br>1.522<br>1.522<br>1.522<br>1.177<br>1.177<br>1.177                        | C<br>2.478<br>2.552<br>2.575<br>C<br>1.824<br>2.005<br>2.097                        | Ng<br>1.832<br>1.984<br>2.075<br>Ng<br>2.304<br>2.389<br>2.425                               | N Si<br>1.595<br>1.595<br>1.595<br>0 Si<br>1.550<br>1.551<br>1.550                              |  |
| Kr<br>Xe<br>Rn<br>Kr<br>Xe<br>Rn             | S<br>1.522<br>1.522<br>1.522<br>1.522<br>1.177<br>1.177<br>1.177                        | C 2.478<br>2.552<br>2.575<br>C 1.824<br>2.005<br>2.097                              | Ng<br>1.832<br>1.984<br>2.075<br>Ng<br>2.304<br>2.389<br>2.425                               | N Si<br>1.595<br>1.595<br>1.595<br>0 Si<br>1.550<br>1.551<br>1.550<br>C N                       |  |
| Kr<br>Xe<br>Rn<br>Kr<br>Xe<br>Rn<br>Kr       | S<br>1.522<br>1.522<br>1.522<br>N<br>1.177<br>1.177<br>1.177<br>1.177                   | C 2.478<br>2.552<br>2.575<br>C 1.824<br>2.005<br>2.097                              | Ng<br>1.832<br>1.984<br>2.075<br>Ng<br>2.304<br>2.389<br>2.425<br>Ng<br>1.80                 | N Si<br>1.595<br>1.595<br>1.595<br>0 Si<br>1.550<br>1.551<br>1.550<br>C N<br>4 1.179            |  |
| Kr<br>Xe<br>Rn<br>Kr<br>Xe<br>Rn<br>Kr<br>Xe | S<br>1.522<br>1.522<br>1.522<br>N<br>1.177<br>1.177<br>1.177<br>1.177<br>1.114<br>1.114 | C<br>2.478<br>2.552<br>2.575<br>C<br>1.824<br>2.005<br>2.097<br>C<br>2.729<br>2.828 | Ng<br>1.832<br>1.984<br>2.075<br>Ng<br>2.304<br>2.389<br>2.425<br>Ng<br>1.80<br>1.80<br>1.97 | N Si<br>1.595<br>1.595<br>1.595<br>0 Si<br>1.550<br>1.551<br>1.550<br>C N<br>4 1.179<br>9 1.179 |  |

|       | B          |         | g     | C               |       |       |   |
|-------|------------|---------|-------|-----------------|-------|-------|---|
| Kr    | 1.207      | 1.896   | 2.9   | 53              | 1.133 | 3     |   |
| Хе    | 1.208      | 2.079   | 3.0   | 51 <sup>·</sup> | 1.133 | 3     |   |
| Rn    | 1.209      | 2.162   | 3.0   | 19 ·            | 1.133 | 3     |   |
|       | •          |         |       |                 |       | _     |   |
|       | <u>о</u> в | Ng      |       | C               |       | S     |   |
| Kr    | 1.208 1    | .903    | 2.753 | 3               | 1.527 | 7     |   |
| Хе    | 1.210 2    | 2.094   | 2.814 | 1 ·             | 1.526 | 5     |   |
| Rn    | 1.211 2    | 2.186   | 2.798 | 3.              | 1.525 | 5     |   |
|       |            |         |       |                 |       |       |   |
|       |            | N       | Ng    |                 |       | Si    |   |
| Kr    | 1 1 1 4    | 2 81    | 1 1   | 800             | 1.59  | 9     |   |
| Xe    | 1 114      | 2 89    | 0 1   | 949             | 1.59  | 8     |   |
| Rn    | 1 114      | 2.85    | 72    | 035             | 1.59  | 7     |   |
| I XII | 1.114      | 2.00    |       | .000            | 1.00  |       |   |
|       |            |         |       |                 |       |       |   |
|       | SI         | 0       | Ng    |                 | N     | SI    |   |
| Kr    | 1.547      | 2.35    | 59 ·  | 1.811           | 1.5   | 95    |   |
| Хе    | 1.547      | 2.44    | 1 1   | 1.966           | 1.5   | 94    |   |
| Rn    | 1.547      | 2.47    | 2 2   | 2.055           | 1.5   | 94    |   |
|       |            |         |       |                 |       |       |   |
|       | S          | C       | N     | a               | C     |       | ) |
| Kr    | 1 521      | 2       | 466   | 18              | 59    | 1 179 |   |
| Xe    | 1.520      | 2       | 549   | 2.0             | 36    | 1 179 |   |
| Rn    | 1.519      | 2       | .568  | 2.1             | 30    | 1.179 |   |
|       |            |         |       |                 |       |       |   |
|       |            |         | 6     |                 | 6     |       | l |
|       | H          |         | 4     | vg              |       |       | ) |
| Kr    | 1.068 1    | .208 1. | 784   | 2.79            | 19    | 1.114 |   |
| Xe    | 1.068 1    | .211 1. | 957   | 2.89            | 16    | 1.114 |   |
| Rn    | 1.067 1    | .212 2. | 045   | 2.87            | 1     | 1.114 |   |

| (  | н С   | <b>C</b> | Ng    |       | <b>C O</b> |  |
|----|-------|----------|-------|-------|------------|--|
| Kr | 1.067 | 1.208    | 1.788 | 2.838 | 1.133      |  |
| Хе | 1.067 | 1.212    | 1.963 | 2.914 | 1.133      |  |
| Rn | 1.067 | 1.213    | 2.054 | 2.892 | 1.132      |  |
|    | H(    |          |       | lg    | C S        |  |
| Kr | 1.067 | 1.210    | 1.810 | 2.594 | 1.524      |  |
| Хе | 1.066 | 1.214    | 1.992 | 2.655 | 1.523      |  |
| Rn | 1.066 | 1.215    | 2.087 | 2.656 | 1.522      |  |



**Fig. S7** The molecular geometry of monovalent cationic isoelectronic compounds XNgY<sup>+</sup>(Ng= Kr, Xe, Rn), and the bond lengths (in units of Å) calculated by MP2/def2-TZVPPD.

**Table S1** Energy changes  $\Delta E$ , the enthalpy changes  $\Delta H$  and Gibbs free energy changes  $\Delta G$  calculated by MP2/augcc-pVTZ/aug-cc-pVTZ-PP for different dissociation channels of OBNgCN (Ng = Kr, Xe, Rn). All these quantities are in units of kcal·mol<sup>-1</sup>.

|                                              |         | ΔΕ      |        |         | ΔΗ      |        |         | ΔG      |        |
|----------------------------------------------|---------|---------|--------|---------|---------|--------|---------|---------|--------|
| Processes                                    | Kr      | Xe      | Rn     | Kr      | Xe      | Rn     | Kr      | Xe      | Rn     |
| OBNgCN → OBNg <sup>+</sup> + CN <sup>-</sup> | 217.65  | 241.98  | 256.74 | 215.77  | 240.09  | 254.84 | 195.83  | 220.26  | 236.34 |
| $OBNgCN \rightarrow OB^- + Ng + CN^+$        | 273.22  | 297.54  | 312.31 | 271.90  | 296.22  | 310.97 | 251.91  | 276.35  | 292.42 |
| $OBNgCN \rightarrow OB + Ng + CN$            | 45.18   | 69.51   | 84.27  | 43.94   | 68.26   | 83.01  | 23.16   | 47.59   | 63.67  |
| $OBNgCN \rightarrow OBNg^+ + CN^-$           | 131.12  | 138.87  | 144.84 | 130.44  | 138.12  | 144.06 | 118.18  | 125.88  | 133.10 |
| $OBNgCN \rightarrow OB^- + CNNg^+$           | 192.90  | 190.67  | 193.22 | 191.93  | 189.67  | 192.17 | 179.59  | 177.36  | 181.14 |
| $OBNgCN \rightarrow OBCN + Ng$               | -128.69 | -104.36 | -89.60 | -127.79 | -103.47 | -88.72 | -137.49 | -113.06 | -96.98 |
| $OBNgCN \rightarrow OBNC + Ng$               | -117.18 | -92.85  | -78.09 | -116.19 | -91.87  | -77.12 | -126.05 | -101.62 | -85.54 |

**Table S2** Natural atom charges (a.u.), and WBIs calculated by MP2/aug-cc-pVTZ/ cc-pVTZ-PP level for the monovalent cationic compounds.

|                             | q <sub>Ng</sub>   | <b>q</b> co             | <b>q</b> <sub>сn/ов</sub>     | WBI <sub>c-o</sub>  | WBI <sub>C-N/O-B</sub>      | WBI <sub>B-Ng/O-Ng</sub> | WBI <sub>C -Ng</sub>          | Δ <i>Ε</i> <sub>Η-L</sub> |
|-----------------------------|-------------------|-------------------------|-------------------------------|---------------------|-----------------------------|--------------------------|-------------------------------|---------------------------|
| COKrCN <sup>+</sup>         | 0.946             | 0.006                   | 0.048                         | 1.963               | 2.961                       | 0.013                    | 1.036                         | 14.313                    |
| COXeCN <sup>+</sup>         | 1.122             | 0.009                   | -0.131                        | 1.954               | 2.953                       | 0.017                    | 1.040                         | 13.646                    |
| CORnCN <sup>+</sup>         | 1.177             | 0.012                   | -0.189                        | 1.940               | 2.958                       | 0.021                    | 1.018                         | 13.120                    |
| OBKrCO <sup>+</sup>         | 0.635             | 0.016                   | 0.349                         | 2.247               | 1.972                       | 0.912                    | 0.020                         | 15.605                    |
| OBXeCO <sup>+</sup>         | 0.768             | 0.023                   | 0.208                         | 2.252               | 1.946                       | 1.007                    | 0.030                         | 15.138                    |
| OBRnCO <sup>+</sup>         | 0.814             | 0.031                   | 0.155                         | 2.260               | 1.928                       | 1.020                    | 0.039                         | 14.703                    |
|                             | $\mathbf{q}_{Ng}$ | q <sub>ов</sub>         | <b>q</b> osi/cs/nn            | WBI <sub>O-B</sub>  | WBI <sub>O-Si/C-S/N-N</sub> | WBI <sub>B-Ng</sub>      | WBI <sub>O-Ng/C-Ng/N-Ng</sub> | Δ <i>Ε</i> <sub>H-L</sub> |
| <b>OBKrOSi</b> <sup>+</sup> | 0.679             | 0.297                   | 0.024                         | 1.938               | 0.909                       | 0.953                    | 0.030                         | 12.737                    |
| OBXeOSi <sup>+</sup>        | 0.825             | 0.144                   | 0.032                         | 1.910               | 0.880                       | 1.042                    | 0.043                         | 13.020                    |
| OBRnOSi⁺                    | 0.881             | 0.085                   | 0.034                         | 1.892               | 0.867                       | 1.055                    | 0.045                         | 13.030                    |
| OBKrCS <sup>+</sup>         | 0.650             | 0.322                   | 0.029                         | 1.954               | 2.790                       | 0.912                    | 0.040                         | 12.880                    |
| OBXeCS <sup>+</sup>         | 0.785             | 0.173                   | 0.043                         | 1.926               | 2.803                       | 0.994                    | 0.064                         | 13.446                    |
| OBRnCS⁺                     | 0.837             | 0.112                   | 0.052                         | 1.906               | 2.812                       | 1.000                    | 0.078                         | 13.655                    |
| OBKrNN <sup>+</sup>         | 0.628             | 0.369                   | 0.003                         | 1.977               | 3.026                       | 0.906                    | 0.009                         | 15.660                    |
| OBXeNN <sup>+</sup>         | 0.759             | 0.236                   | 0.005                         | 1.951               | 3.025                       | 1.006                    | 0.012                         | 15.104                    |
| OBRnNN <sup>+</sup>         | 0.802             | 0.191                   | 0.007                         | 1.930               | 3.024                       | 1.023                    | 0.015                         | 14.656                    |
|                             | $\mathbf{q}_{Ng}$ | <b>q</b> <sub>NSi</sub> | <b>q</b> <sub>NN/SC/SiO</sub> | WBI <sub>N-Si</sub> | WBI <sub>N-N/S-C/Si-O</sub> | WBI <sub>N-Ng</sub>      | WBI <sub>N-Ng/C-Ng/O-Ng</sub> | Δ <i>Ε</i> <sub>Η-L</sub> |
| NNKrNSi <sup>+</sup>        | 0.904             | 0.091                   | 0.006                         | 0.988               | 3.027                       | 0.010                    | 0.943                         | 13.351                    |
| NNXeNSi <sup>+</sup>        | 1.123             | -0.132                  | 0.009                         | 0.986               | 3.026                       | 0.017                    | 0.932                         | 12.421                    |
| NNRnNSi <sup>+</sup>        | 1.168             | -0.180                  | 0.013                         | 1.029               | 3.024                       | 0.023                    | 0.904                         | 11.970                    |
| SCKrNSi <sup>+</sup>        | 0.921             | 0.011                   | 0.068                         | 1.039               | 2.783                       | 0.897                    | 0.103                         | 12.971                    |
| SCXeNSi <sup>+</sup>        | 1.150             | -0.238                  | 0.088                         | 1.049               | 2.800                       | 0.846                    | 0.166                         | 12.277                    |
| SCRnNSi <sup>+</sup>        | 1.208             | -0.304                  | 0.095                         | 1.096               | 2.808                       | 0.799                    | 0.186                         | 11.703                    |
| SiOKrNSi <sup>+</sup>       | 0.970             | -0.015                  | 0.045                         | 1.052               | 0.930                       | 0.935                    | 0.060                         | 12.654                    |

| SiOXeNSi <sup>+</sup> | 1.192                  | -0.248                  | 0.055                            | 1.066              | 0.888                           | 0.880               | 0.081                         | 12.048                    |
|-----------------------|------------------------|-------------------------|----------------------------------|--------------------|---------------------------------|---------------------|-------------------------------|---------------------------|
| SiORnNSi <sup>+</sup> | 1.250                  | -0.307                  | 0.058                            | 1.111              | 0.873                           | 0.838               | 0.084                         | 11.480                    |
|                       | <b>q</b> <sub>Ng</sub> | <b>q</b> <sub>CN</sub>  | <b>q</b> sio/sc/nn               | WBI <sub>C-N</sub> | WBI <sub>SI-O/S-C/N-N</sub>     | WBI <sub>C-Ng</sub> | WBI <sub>O-Ng/N-Ng/C-Ng</sub> | $\Delta E_{H-L}$          |
| NCKrOSi <sup>+</sup>  | 0.974                  | -0.036                  | 0.062                            | 2.957              | 0.843                           | 1.007               | 0.077                         | 13.113                    |
| NCXeOSi <sup>+</sup>  | 1.153                  | -0.225                  | 0.072                            | 2.952              | 0.810                           | 0.979               | 0.098                         | 13.129                    |
| NCRnOSi <sup>+</sup>  | 1.217                  | -0.290                  | 0.073                            | 2.956              | 0.800                           | 0.944               | 0.100                         | 13.064                    |
| NCXeCS <sup>+</sup>   | 0.912                  | -0.025                  | 0.112                            | 2.970              | 2.823                           | 0.936               | 0.147                         | 13.341                    |
| NCRnCS <sup>+</sup>   | 1.089                  | -0.218                  | 0.129                            | 2.963              | 2.834                           | 0.909               | 0.202                         | 13.628                    |
| NCKrCS *              | 1.156                  | -0.291                  | 0.134                            | 2.966              | 2.839                           | 0.867               | 0.222                         | 13.054                    |
| NCKrNN <sup>+</sup>   | 0.941                  | 0.047                   | 0.012                            | 2.962              | 3.017                           | 1.027               | 0.023                         | 14.628                    |
| NCXeNN <sup>+</sup>   | 1.115                  | -0.133                  | 0.018                            | 2.955              | 3.015                           | 1.028               | 0.033                         | 13.676                    |
| NCRnNN <sup>+</sup>   | 1.169                  | -0.194                  | 0.025                            | 2.960              | 3.011                           | 1.002               | 0.043                         | 13.191                    |
|                       | $\mathbf{q}_{Ng}$      | <b>q</b> <sub>ссн</sub> | <b>q</b> <sub>NN/co/osi/cs</sub> | WBI <sub>c-c</sub> | WBI <sub>N-N/C-O/O-Si/C-S</sub> | WBI <sub>C-Ng</sub> | WBI <sub>N-Ng/C-Ng/O-Ng</sub> | Δ <i>Ε</i> <sub>Η-L</sub> |
| HCCKrNN <sup>+</sup>  | 0.920                  | 0.073                   | 0.008                            | 2.867              | 3.021                           | 1.034               | 0.016                         | 14.244                    |
| HCCXeNN <sup>+</sup>  | 1.091                  | -0.103                  | 0.012                            | 2.871              | 3.019                           | 1.041               | 0.024                         | 13.220                    |
| HCCRnNN⁺              | 1.140                  | -0.157                  | 0.017                            | 2.887              | 3.016                           | 1.023               | 0.032                         | 12.758                    |
| HCCKrCO <sup>+</sup>  | 0.910                  | 0.064                   | 0.026                            | 2.870              | 2.247                           | 1.020               | 0.036                         | 14.266                    |
| HCCXeCO <sup>+</sup>  | 1.077                  | -0.116                  | 0.039                            | 2.875              | 2.255                           | 1.017               | 0.058                         | 13.264                    |
| HCCRnCO <sup>+</sup>  | 1.123                  | -0.174                  | 0.051                            | 2.892              | 2.265                           | 0.990               | 0.076                         | 12.814                    |
| HCCKrOSi <sup>+</sup> | 0.950                  | 0.010                   | 0.040                            | 2.884              | 0.901                           | 1.027               | 0.053                         | 13.029                    |
| HCCXeOSi <sup>+</sup> | 1.127                  | -0.178                  | 0.051                            | 2.890              | 0.867                           | 1.010               | 0.071                         | 12.414                    |
| HCCRnOSi <sup>+</sup> | 1.186                  | -0.239                  | 0.054                            | 2.905              | 0.853                           | 0.982               | 0.074                         | 11.874                    |
| HCCKrCS <sup>+</sup>  | 0.913                  | 0.030                   | 0.057                            | 2.885              | 2.792                           | 0.992               | 0.089                         | 13.772                    |
| HCCXeCS <sup>+</sup>  | 1 084                  | -0 161                  | 0.079                            | 2 002              | 2 905                           | 0 970               | 0 138                         | 12 768                    |
|                       | 1.00+                  | -0.101                  | 0.078                            | 2.893              | 2.605                           | 0.970               | 0.138                         | 12.700                    |

**Table S3** Electron density  $\rho$ , Laplacian  $\nabla^2 \rho$ , electron local energy density H, the ratio of local kinetic energy density  $G(\mathbf{r})$  and electron density  $\rho(\mathbf{r})$  and electron localization function (ELF) at the bond critical points (BCPs) of the B/C/N–Ng bonds in the Ng inserted compounds calculated by the MP2/aug-cc-pVTZ/cc-pVTZ-PP method.

|                      |       |        |          | O/B-Ng    |       | Ng-C  |        |           |           |       |
|----------------------|-------|--------|----------|-----------|-------|-------|--------|-----------|-----------|-------|
|                      | ρ(r)  | ∇²ρ(r) | H(r)     | G(r)/p(r) | ELF   | ρ(r)  | ∇²ρ(r) | H(r)      | G(r)/ρ(r) | ELF   |
| COKrCN <sup>+</sup>  | 0.019 | 0.091  | 0.003    | 0.994     | 0.032 | 0.195 | -0.305 | -0.157    | 0.414     | 0.905 |
| COXeCN <sup>+</sup>  | 0.020 | 0.083  | 0.003    | 0.917     | 0.038 | 0.162 | -0.127 | -0.111    | 0.488     | 0.787 |
| CORnCN⁺              | 0.021 | 0.091  | 0.002    | 0.945     | 0.039 | 0.145 | -0.012 | -0.086    | 0.573     | 0.685 |
| OBKrCO <sup>+</sup>  | 0.121 | 0.036  | -0.112   | 0.997     | 0.342 | 0.018 | 0.057  | 0.001     | 0.734     | 0.057 |
| OBXeCO <sup>+</sup>  | 0.120 | -0.196 | -0.114   | 0.540     | 0.611 | 0.019 | 0.053  | 0.001     | 0.669     | 0.072 |
| OBRnCO <sup>+</sup>  | 0.117 | -0.239 | -0.090   | 0.258     | 0.848 | 0.021 | 0.060  | 0.000     | 0.687     | 0.080 |
|                      |       |        |          | B-Ng      |       |       |        | O-Ng/C- N | g/N-Ng    |       |
|                      | ρ(r)  | ∇²ρ(r) | H(r)     | G(r)/ρ(r) | ELF   | ρ(r)  | ∇²ρ(r) | H(r)      | G(r)/ρ(r) | ELF   |
| OBKrOSi <sup>+</sup> | 0.127 | -0.026 | -0.121   | 0.902     | 0.404 | 0.038 | 0.149  | 0.000     | 0.979     | 0.081 |
| OBXeOSi <sup>+</sup> | 0.125 | -0.264 | -0.115   | 0.396     | 0.740 | 0.040 | 0.136  | -0.002    | 0.898     | 0.102 |
| OBRnOSi <sup>+</sup> | 0.118 | -0.197 | -0.081   | 0.265     | 0.935 | 0.041 | 0.144  | -0.003    | 0.938     | 0.097 |
| OBKrCS <sup>+</sup>  | 0.125 | -0.030 | -0.118   | 0.888     | 0.388 | 0.029 | 0.074  | -0.001    | 0.683     | 0.113 |
| OBXeCS <sup>+</sup>  | 0.123 | -0.267 | -0.111   | 0.363     | 0.723 | 0.032 | 0.069  | -0.003    | 0.622     | 0.189 |
| OBRnCS <sup>+</sup>  | 0.116 | -0.180 | -0.076   | 0.268     | 0.938 | 0.035 | 0.076  | -0.004    | 0.650     | 0.190 |
| OBKrNN⁺              | 0.120 | 0.053  | -0.110   | 1.024     | 0.331 | 0.015 | 0.063  | 0.003     | 0.864     | 0.033 |
| OBXeNN <sup>+</sup>  | 0.120 | -0.178 | -0.114   | 0.579     | 0.588 | 0.016 | 0.060  | 0.002     | 0.792     | 0.042 |
| OBRnNN <sup>+</sup>  | 0.117 | -0.253 | -0.096   | 0.283     | 0.803 | 0.019 | 0.069  | 0.002     | 0.814     | 0.047 |
|                      |       | E      | B/C/N-Ng |           |       |       |        | Ng-C      |           |       |
|                      | ρ(r)  | ∇²ρ(r) | H(r)     | G(r)/ρ(r) | ELF   | ρ(r)  | ∇²ρ(r) | H(r)      | G(r)/ρ(r) | ELF   |
| NKrNSi <sup>+</sup>  | 0.018 | 0.074  | 0.002    | 0.875     | 0.038 | 0.192 | -0.065 | -0.126    | 0.571     | 0.810 |

| NNXeNSi <sup>+</sup>  | 0.020 | 0.072  | 0.002  | 0.814     | 0.048 | 0.161          | 0.003  | -0.109 | 0.679     | 0.685 |  |  |  |
|-----------------------|-------|--------|--------|-----------|-------|----------------|--------|--------|-----------|-------|--|--|--|
| NNRnNSi⁺              | 0.023 | 0.083  | 0.001  | 0.840     | 0.054 | 0.145          | 0.110  | -0.083 | 0.764     | 0.587 |  |  |  |
| SCKrNSi <sup>+</sup>  | 0.051 | 0.096  | -0.008 | 0.640     | 0.208 | 0.182          | -0.030 | -0.115 | 0.587     | 0.813 |  |  |  |
| SCXeNSi <sup>+</sup>  | 0.053 | 0.083  | -0.011 | 0.609     | 0.243 | 0.151          | 0.034  | -0.098 | 0.704     | 0.641 |  |  |  |
| SCRnNSi <sup>+</sup>  | 0.053 | 0.094  | -0.012 | 0.662     | 0.218 | 0.134          | 0.135  | -0.073 | 0.795     | 0.529 |  |  |  |
| SiOKrNSi⁺             | 0.048 | 0.171  | -0.003 | 0.953     | 0.105 | 0.190          | -0.061 | -0.124 | 0.574     | 0.822 |  |  |  |
| SiOXeNSi <sup>+</sup> | 0.049 | 0.150  | -0.006 | 0.891     | 0.123 | 0.156          | 0.022  | -0.104 | 0.700     | 0.633 |  |  |  |
| SiORnNSi⁺             | 0.049 | 0.163  | -0.006 | 0.952     | 0.110 | 0.140          | 0.126  | -0.078 | 0.785     | 0.531 |  |  |  |
|                       |       |        | C-Ng   |           |       |                |        | O-Ng/N | I-Ng/C-Ng |       |  |  |  |
|                       | ρ(r)  | ∇²ρ(r) | H(r)   | G(r)/ρ(r) | ELF   | ρ(r)           | ∇²ρ(r) | H(r)   | G(r)/p(r) | ELF   |  |  |  |
| NCKrOSi <sup>+</sup>  | 0.191 | -0.241 | -0.141 | 0.422     | 0.904 | 0.055          | 0.186  | -0.006 | 0.950     | 0.132 |  |  |  |
| NCXeOSi <sup>+</sup>  | 0.154 | -0.082 | -0.101 | 0.524     | 0.726 | 0.055          | 0.161  | -0.009 | 0.893     | 0.148 |  |  |  |
| NCRnOSi <sup>+</sup>  | 0.136 | 0.028  | -0.076 | 0.612     | 0.615 | 0.055          | 0.177  | -0.008 | 0.967     | 0.126 |  |  |  |
| SCKrCN <sup>+</sup>   | 0.178 | -0.177 | -0.121 | 0.430     | 0.899 | 0.053          | 0.093  | -0.009 | 0.619     | 0.248 |  |  |  |
| SCXeCN <sup>+</sup>   | 0.145 | -0.064 | -0.091 | 0.514     | 0.745 | 0.054          | 0.079  | -0.012 | 0.591     | 0.276 |  |  |  |
| SCRnCN <sup>+</sup>   | 0.128 | 0.038  | -0.068 | 0.605     | 0.621 | 0.055          | 0.092  | -0.013 | 0.650     | 0.242 |  |  |  |
| NNKrCN <sup>+</sup>   | 0.194 | -0.298 | -0.155 | 0.413     | 0.905 | 0.022          | 0.087  | 0.002  | 0.875     | 0.050 |  |  |  |
| NNXeCN <sup>+</sup>   | 0.161 | -0.122 | -0.109 | 0.491     | 0.786 | 0.023          | 0.080  | 0.001  | 0.810     | 0.059 |  |  |  |
| NNRnCN <sup>+</sup>   | 0.143 | -0.006 | -0.084 | 0.578     | 0.682 | 0.026          | 0.090  | 0.001  | 0.844     | 0.063 |  |  |  |
|                       |       |        | C-Ng   |           |       | N-Ng/C-Ng/O-Ng |        |        |           |       |  |  |  |
|                       | ρ(r)  | ∇²ρ(r) | H(r)   | G(r)/ρ(r) | ELF   | ρ(r)           | ∇²ρ(r) | H(r)   | G(r)/p(r) | ELF   |  |  |  |
| HCCKrNN <sup>+</sup>  | 0.200 | -0.341 | -0.171 | 0.432     | 0.879 | 0.019          | 0.077  | 0.002  | 0.886     | 0.039 |  |  |  |
| HCCXeNN <sup>+</sup>  | 0.167 | -0.144 | -0.117 | 0.486     | 0.817 | 0.020          | 0.072  | 0.002  | 0.818     | 0.048 |  |  |  |
| HCCRnNN <sup>+</sup>  | 0.149 | -0.023 | -0.091 | 0.572     | 0.722 | 0.022          | 0.081  | 0.001  | 0.846     | 0.053 |  |  |  |
| HCCKrCO <sup>+</sup>  | 0.199 | -0.329 | -0.167 | 0.428     | 0.884 | 0.022          | 0.067  | 0.001  | 0.736     | 0.071 |  |  |  |
| HCCXeCO <sup>+</sup>  | 0.165 | -0.135 | -0.115 | 0.493     | 0.811 | 0.024          | 0.064  | 0.000  | 0.681     | 0.091 |  |  |  |
| HCCRnCO <sup>+</sup>  | 0.147 | -0.012 | -0.088 | 0.579     | 0.712 | 0.027          | 0.072  | -0.001 | 0.706     | 0.097 |  |  |  |
| HCCKrOSi <sup>+</sup> | 0.198 | -0.298 | -0.158 | 0.423     | 0.901 | 0.045          | 0.168  | -0.002 | 0.973     | 0.098 |  |  |  |
| HCCXeOSi <sup>+</sup> | 0.161 | -0.110 | -0.110 | 0.513     | 0.772 | 0.047          | 0.149  | -0.005 | 0.903     | 0.117 |  |  |  |
| HCCRnOSi <sup>+</sup> | 0.143 | 0.009  | -0.084 | 0.600     | 0.667 | 0.047          | 0.161  | -0.005 | 0.960     | 0.106 |  |  |  |
| HCCKrCS <sup>+</sup>  | 0.194 | -0.272 | -0.150 | 0.424     | 0.897 | 0.040          | 0.088  | -0.004 | 0.667     | 0.159 |  |  |  |
| HCCXeCS <sup>+</sup>  | 0.157 | -0.099 | -0.105 | 0.512     | 0.787 | 0.043          | 0.079  | -0.007 | 0.620     | 0.201 |  |  |  |
| HCCRnCS <sup>+</sup>  | 0.139 | 0.018  | -0.079 | 0.602     | 0.675 | 0.046          | 0.088  | -0.008 | 0.665     | 0.190 |  |  |  |

**Table S4** EDA results with the ETS-NOCV scheme at the level PBE-D3/TZ2P// CCSD(T)/cc-pVTZ/ cc-pVTZ-PP. All energy terms are in units of kcal·mol<sup>-1</sup>. The percentages within the parentheses show the contributions towards the total attractive energy  $\Delta E_{elstat} + \Delta E_{orb} + \Delta E_{dis}$ , and those within the square brackets for  $\Delta E(\sigma 1)$  show the contributions towards the total orbital interaction energy  $\Delta E_{orb}$ .

|         | Fragments | ΔE <sub>pauli</sub> | $\Delta E_{elstat}$ | $\Delta E_{orb}$ | $\Delta E_{dis}$ | $\Delta E_{int}$ | ΔΕ(σ1)         | <i>ΔΕ</i> (σ2) | <i>ΔΕ</i> (π1) | <i>ΔΕ</i> (π2) |
|---------|-----------|---------------------|---------------------|------------------|------------------|------------------|----------------|----------------|----------------|----------------|
| OBKrCN  | OB+KrCN   | 214.41              | -70.14(26.60)       | -192.70(73.08)   | -0.83(0.31)      | -49.27           | -126.17(65.48) | -4.38          | -26.92         | -19.84         |
| OBXeCN  | OB+XeCN   | 223.04              | -71.71(25.51)       | -208.44(74.15)   | -0.97(0.35)      | -58.09           | -145.94(70.02) | -3.96          | -25.76         | -19.77         |
| OBRnCN  | OB+RnCN   | 224.30              | -73.59(25.64)       | -212.38(74.01)   | -0.99(0.34)      | -62.66           | -152.31(71.72) | -3.96          | -24.15         | -20.04         |
| OBKrCN  | OBKr+CN   | 107.21              | -33.05(18.38)       | -146.02(81.19)   | -0.79(0.44)      | -72.65           | -109.92(75.28) | -1.02          | -11.41         | -5.10          |
| OBXeCN  | OBXe+CN   | 134.56              | -42.13(19.63)       | -171.49(79.92)   | -0.95(0.44)      | -80.01           | -128.14(74.72) | -1.20          | -15.43         | -5.31          |
| OBRnCN  | OBRn+CN   | 153.86              | -48.28 (20.54)      | -184.66(78.55)   | -2.15(0.91)      | -81.23           | -138.09(74.78) | -1.46          | -16.12         | -6.80          |
| OBKrNSi | OB+KrNSi  | 189.84              | -64.26(26.89)       | -172.83(72.33)   | -1.87(0.78)      | -49.11           | -116.92(67.65) | -3.41          | -15.57         | -23.99         |
| OBXeNSi | OB+XeNSi  | 200.29              | -65.91(25.29)       | -192.54(73.88)   | -2.15(0.83)      | -60.30           | -139.44(72.42) | -3.29          | -15.40         | -23.29         |
| OBRnNSi | OB+RnNSi  | 197.29              | -65.87(25.24)       | -192.94(73.94)   | -2.12(0.81)      | -63.63           | -141.76(73.47) | -3.24          | -15.27         | -22.25         |
| OBKrNSi | OBKr+NSi  | 147.51              | -65.30(30.00)       | -149.90(68.87)   | -2.45(1.13)      | -70.14           | -65.42(43.64)  | -2.25          | -69.12         | -5.07          |

| OBXeNSi  | OBXe+NSi  | 191.93 | -87.48(32.25)  | -180.87(66.67) | -2.94(1.08) | -79.36 | -67.22(37.17)  | -2.53 | -93.34  | 3.33   |
|----------|-----------|--------|----------------|----------------|-------------|--------|----------------|-------|---------|--------|
| OBRnNSi  | OBRn+NSi  | 199.24 | -93.36(33.03)  | -186.31(65.92) | -2.95(1.04) | -83.37 | -66.14(35.50)  | -2.55 | -99.42  | 4.16   |
| OBKrOB   | OBKr+OB   | 112.27 | -34.55(22.07)  | -120.32(76.84) | -1.71(1.09) | -44.32 | -85.55(71.10)  | -1.27 | -16.70  | -7.80  |
| OBXeOB   | OBXe+OB   | 149.01 | -46.66(23.00)  | -154.20(76.00) | -2.04(1.01) | -53.89 | -112.93(73.24) | -1.57 | -20.76  | -9.56  |
| OBRnOB   | OBRn+OB   | 166.40 | -53.68(23.86)  | -169.28(75.23) | -2.05(0.91) | -58.61 | -125.70(74.24) | -1.85 | -21.17  | -10.58 |
| NCKrCN   | NCKr+CN   | 169.89 | -51.27(22.48)  | -174.88(76.69) | -1.89(0.83) | -58.15 | -119.25(68.19) | -3.15 | -11.48  | -18.50 |
| NCXeCN   | NCXe+CN   | 197.51 | -59.43(22.11)  | -207.10(77.05) | -2.24(0.83) | -71.26 | -146.47(70.73) | -3.40 | -11.94  | -20.63 |
| NCRnCN   | NCRn+CN   | 204.35 | -62.94(22.46)  | -215.00(76.73) | -2.25(0.80) | -75.84 | -153.72(71.50) | -3.60 | -14.25  | -19.99 |
| SiNKrNSi | SiNKr+NSi | 184.64 | -78.80(32.22)  | -163.30(66.76) | -2.50(1.02) | -59.96 | -78.22(47.90)  | 1.66  | -67.52  | -3.39  |
| SiNXeNSi | SiNXe+NSi | 237.02 | -98.96(32.29)  | -204.50(66.72) | -3.04(0.99) | -69.48 | -57.70(28.22)  | -2.73 | -49.64  | -40.08 |
| SiNRnNSi | SiNRn+NSi | 255.05 | -116.63(34.78) | -215.65(64.31) | -3.04(0.91) | -80.27 | -71.34(33.08)  | -1.23 | -115.81 | -9.46  |
| OBKrCCH  | OB+KrCCH  | 171.64 | -55.43(24.75)  | -166.69(74.44) | -1.82(0.81) | -52.29 | -117.79(70.67) | -2.77 | -20.83  | -12.71 |
| OBXeCCH  | OB+XeCCH  | 184.32 | -58.88(23.92)  | -185.18(75.23) | -2.10(0.85) | -61.83 | -137.83(74.43) | -2.57 | -22.44  | -12.40 |
| OBRnCCH  | OB+RnCCH  | 187.50 | -61.14(24.17)  | -189.73(75.01) | -2.08(0.82) | -65.44 | -143.16(75.46) | -1.16 | -21.62  | -12.42 |
| OBKrCCH  | OBKr+CCH  | 278.01 | -124.53(32.33) | -259.01(67.25) | -1.63(0.42) | -      | -97.43(37.62)  | -2.61 | -10.67  | -79.05 |
| OBXeCCH  | OBXe+CCH  | 288.56 | -136.31(33.59) | -267.46(65.90) | -2.09(0.51) | -      | -105.35(39.39) | -2.23 | -11.23  | -76.67 |
| OBRnCCH  | OBRn+CCH  | 294.67 | -143.73(34.05) | -276.32(65.46) | -2.05(0.49) | -      | -105.68(38.25) | -2.35 | -12.78  | -74.56 |
| NCKrCCH  | NC+KrCCH  | 157.25 | -48.50(21.38)  | -176.48(77.80) | -1.87(0.82) | -69.60 | -128.55(72.84) | -5.21 | -2.19   | -18.29 |
| NCXeCCH  | NC+XeCCH  | 181.82 | -56.41(21.45)  | -204.37(77.71) | -2.20(0.84) | -81.16 | -153.20(74.96) | -6.72 | -2.30   | -21.07 |
| NCRnCCH  | NC+RnCCH  | 190.54 | -60.32(21.94)  | -212.36(77.25) | -2.21(0.80) | -84.36 | -159.38(75.05) | -8.19 | -2.52   | -20.77 |
| NCKrCCH  | NCKr+CCH  | 255.46 | -113.23(34.48) | -213.16(64.92) | -1.97(0.60) | -72.90 | -87.20(40.91)  | -5.47 | -17.08  | -87.30 |
| NCXeCCH  | NCXe+CCH  | 292.18 | -131.78(35.08) | -241.57(64.30) | -2.35(0.63) | -83.51 | -87.96(36.41)  | -2.08 | -33.86  | -86.18 |
| NCRnCCH  | NCRn+CCH  | 295.71 | -136.50(35.35) | -247.24(64.04) | -2.35(0.61) | -90.38 | -126.30(51.08) | -1.92 | -19.35  | -77.59 |
| SiNKrCCH | SiN+KrCCH | 195.64 | -83.80(31.32)  | -181.25(67.74) | -2.53(0.95) | -71.95 | -85.79(47.33)  | -0.17 | -1.20   | -79.07 |
| SiNXeCCH | SiN+XeCCH | 231.30 | -103.09(32.74) | -208.83(66.31) | -3.00(0.95) | -83.61 | -111.39(53.34) | -5.11 | -2.85   | -76.83 |
| SiNRnCCH | SiN+RnCCH | 230.70 | -106.24(33.46) | -208.30(65.60) | -2.99(0.94) | -86.83 | -112.91(54.20) | -4.79 | -3.05   | -74.42 |
| SiNKrCCH | SiNKr+CCH | 239.27 | -104.30(32.33) | -216.32(67.06) | -1.98(0.61) | -83.34 | -90.62(41.89)  | -5.54 | -5.49   | -77.74 |
| SiNXeCCH | SiNXe+CCH | 263.53 | -117.01(33.11) | -234.03(66.23) | -2.34(0.66) | -89.85 | -125.28(53.53) | -1.79 | -16.13  | -72.78 |
| SiNRnCCH | SiNRn+CCH | 256.28 | -116.67(33.39) | -230.41(65.94) | -2.32(0.66) | -93.12 | -125.40(54.53) | -1.26 | -16.53  | -69.17 |

**Table S5** EDA results with the ETS-NOCV scheme at the level PBE-D3/TZ2P// CCSD(T)/cc-pVTZ/ cc-pVTZ-PP. All energy terms are in units of *k*cal·mol<sup>-1</sup>. The percentages within the parentheses show the contributions towards the total attractive energy  $\Delta E_{elstat} + \Delta E_{orb} + \Delta E_{dis}$ , and those within the square brackets for  $\Delta E(\sigma 1)$  show the contributions towards the total orbital interaction energy  $\Delta E_{orb}$ .

|                     | Fragments             | ∆E <sub>paul</sub> | Δ <i>E</i> <sub>elstat</sub> | ΔE <sub>orb</sub> | $\Delta E_{\rm dis}$ | Δ <i>E</i> int | Δ <i>Ε</i> (σ1) | Δ <i>Ε</i> (σ | ΔΕ(π  | ΔΕ(π  |
|---------------------|-----------------------|--------------------|------------------------------|-------------------|----------------------|----------------|-----------------|---------------|-------|-------|
| COKrCN <sup>+</sup> | COKr++CN              | 357.2              | -                            | -                 | -                    | -              | -               | -             | -     | -     |
| COXeCN <sup>+</sup> | COXe⁺+CN              | 342.8              | -                            | -                 | -                    | -              | -               | -             | -     | -     |
| CORnCN              | CORn⁺+CN              | 307.4              | -                            | -                 | -                    | -              | -               | -             | -     | -     |
| OBKrCO <sup>+</sup> | OB+KrCO⁺              | 312.3              | -                            | -                 | -                    | -              | -               | -             | -     | -     |
| OBXeCO              | OB+XeCO <sup>+</sup>  | 291.7              | -                            | -                 | -                    | -              | -               | -8.61         | -     | -     |
| OBRnCO              | OB+RnCO⁺              | 292.1              | -                            | -                 | -                    | -              | -               | -             | -8.53 | -8.53 |
| OBKrOSi             | OB+KrOSi⁺             | 326.2              | -                            | -                 | -                    | -              | -               | -9.79         | -     | -     |
| OBXeOSi             | OB+XeOSi <sup>+</sup> | 302.0              | -                            | -                 | -                    | -              | -               | -8.11         | -     | -     |
| OBRnOSi             | OB+RnOSi⁺             | 299.3              | -                            | -                 | -                    | -              | -               | -8.00         | -     | -     |
| OBKrCS <sup>+</sup> | OB+KrCS⁺              | 315.9              | -                            | -                 | -                    | -              | -               | -9.70         | -     | -     |
| OBXeCS⁺             | OB+XeCS <sup>+</sup>  | 291.1              | -                            | -                 | -                    | -              | -               | -7.73         | -     | -     |
| OBRnCS <sup>+</sup> | OB+RnCS⁺              | 286.8              | -                            | -                 | -                    | -              | -               | -7.49         | -     | -     |
| OBKrNN <sup>+</sup> | OB+KrNN <sup>+</sup>  | 322.6              | -                            | -                 | -                    | -              | -               | -             | -     | -     |
| OBXeNN              | OB+XeNN⁺              | 307.7              | -                            | -                 | -                    | -              | -               | -9.32         | -     | -     |
| OBRnNN              | OB+RnNN⁺              | 294.7              | -                            | -                 | -                    | -              | -               | -             | -     | -     |
| NNKrNSi             | NNKr++NSi             | 343.6              | -                            | -                 | -                    | -              | -               | -             | -     | -     |
| NNXeNSi             | NNXe++NSi             | 350.5              | -                            | -                 | -                    | -              | -               | -3.39         | -     | -     |

| NNRnNSi              | NNRn++NSi               | 336.7 | - | - | - | - | - | -8.60 | -     | -     |
|----------------------|-------------------------|-------|---|---|---|---|---|-------|-------|-------|
| SCKrNSi <sup>+</sup> | SCKr <sup>+</sup> +NSi  | 306.6 | - | - | - | - | - | -     | -2.96 | -5.03 |
| SCXeNSi <sup>+</sup> | SCXe⁺+NSi               | 321.7 | - | - | - | - | - | -7.15 | -     | -     |
| SCRnNSi⁺             | SCRn⁺+NSi               | 303.7 | - | - | - | - | - | -     | -     | -     |
| SiOKrNSi             | SiOKr <sup>+</sup> +NSi | 333.9 | - | - | - | - | - | -9.42 | -     | -     |
| SiOXeNSi             | SiOXe++NSi              | 334.3 | - | - | - | - | - | -     | -     | -     |
| SiORnNS              | SiORn⁺+NS               | 314.7 | - | - | - | - | - | -     | -     | -     |
| NCKrOSi <sup>+</sup> | NC+KrOSi <sup>+</sup>   | 348.9 | - | - | - | - | - | -     | -     | -     |
| NCXeOSi              | NC+XeOSi <sup>+</sup>   | 310.7 | - | - | - | - | - | -     | -     | -     |
| NCRnOSi              | NC+RnOSi <sup>+</sup>   | 297.2 | - | - | - | - | - | -     | -     | -     |
| SCKrCN <sup>+</sup>  | SCKr <sup>+</sup> +CN   | 311.7 | - | - | - | - | - | -     | -     | -     |
| SCXeCN <sup>+</sup>  | SCXe++CN                | 283.8 | - | - | - | - | - | -9.55 | -     | -     |
| SCRnCN <sup>+</sup>  | SCRn++CN                | 272.0 | - | - | - | - | - | -9.13 | -     | -     |
| NNKrCN <sup>+</sup>  | NNKr++CN                | 349.4 | - | - | - | - | - | -     | -     | -     |
| NNXeCN               | NNXe++CN                | 312.6 | - | - | - | - | - | -     | -     | -     |
| NNRnCN               | NNRn <sup>+</sup> +CN   | 300.6 | - | - | - | - | - | -     | -     | -     |
| HCCKrN               | HCC+KrNN                | 473.2 | - | - | - | - | - | -8.89 | -     | -     |
| HCCXeN               | HCC+XeNN                | 431.9 | - | - | - | - | - | -     | -6.37 | -2.53 |
| HCCRnN               | HCC++RnN                | 316.2 | - | - | - | - | - | -     | -     | -     |
| HCCKrC               | HCC++KrC                | 470.1 | - | - | - | - | - | -     | -5.45 | -8.30 |
| HCCXeC               | HCC++XeC                | 428.7 | - | - | - | - | - | -1.62 | -     | -     |
| HCCRnC               | HCC++RnC                | 414.5 | - | - | - | - | - | -0.90 | -     | -     |
| HCCKrOS              | HCC+KrOSi               | 472.5 | - | - | - | - | - | -     | -     | -     |
| HCCXeO               | HCC+XeOSi               | 427.2 | - | - | - | - | - | -5.86 | -     | -     |
| HCCRnO               | HCC+RnOS                | 412.5 | - | - | - | - | - | -2.63 | -     | -     |
| HCCKrCS              | HCC+KrCS <sup>+</sup>   | 453.8 | - | - | - | - | - | -9.70 | -     | -     |
| HCCXeCS              | HCC+XeCS⁺               | 409.6 | - | - | - | - | - | -1.35 | -     | -     |
| HCCRnC               | HCC+RnCS <sup>+</sup>   | 393.0 | - | - | - | - | - | -0.77 | -     | -     |

**Table S6** EDA results with the ETS-NOCV scheme at the level PBE-D3/TZ2P// CCSD(T)/cc-pVTZ/cc-pVTZ-PP. All energy terms are in units of *k*cal·mol<sup>-1</sup>. The percentages within the parentheses show the contributions towards the total attractive energy  $\Delta E_{elstat} + \Delta E_{orb} + \Delta E_{dis}$ , and those within the square brackets for  $\Delta E(\sigma 1)$  show the contributions towards the total orbital interaction energy  $\Delta E_{orb}$ .

|                      | Fragments             | ∆E <sub>pau</sub> | $\Delta E_{elstat}$ | ΔE <sub>orb</sub> | $\Delta E_{dis}$ | ΔE <sub>int</sub> | <i>ΔΕ</i> (σ1) | ΔΕ(σ  | <i>ΔΕ</i> (π | ΔΕ(π  |
|----------------------|-----------------------|-------------------|---------------------|-------------------|------------------|-------------------|----------------|-------|--------------|-------|
| COKrCN⁺              | CO+KrCN⁺              | 7.73              | -                   | -                 | -                | -5.10             | -              | _     | -1.20        | -1.20 |
| COXeCN⁺              | CO+XeCN <sup>+</sup>  | 9.52              | -                   | -                 | -                | -4.65             | -              | —     | -1.20        | -1.20 |
| CORnCN <sup>+</sup>  | CO+RnCN <sup>+</sup>  | 13.3              | -                   | -                 | -                | -3.82             | -              | —     | -1.42        | -1.42 |
| OBKrCO <sup>+</sup>  | OBKr⁺+CO              | 8.01              | -                   | -                 | -                | -9.33             | -              | _     | -0.67        | -0.67 |
| OBXeCO <sup>+</sup>  | OBXe++CO              | 10.3              | -                   | -                 | -                | -7.75             | -              | _     | -0.68        | -0.68 |
| OBRnCO <sup>+</sup>  | OBRn⁺+CO              | 15.1              | -                   | -                 | -                | -6.90             | -              | _     | -0.81        | -0.81 |
| OBKrOSi <sup>+</sup> | OBKr⁺+OSi             | 23.6              | -                   | -                 | -                | -                 | -              | -0.57 | -2.91        | -2.91 |
| OBXeOSi <sup>+</sup> | OBXe++OSi             | 31.4              | -                   | -                 | -                | -                 | -              | -0.77 | -2.87        | -2.87 |
| OBRnOSi              | OBRn⁺+OS              | 38.9              | -                   | -                 | -                | -                 | -              | -0.99 | -3.27        | -3.27 |
| OBKrCS <sup>+</sup>  | OBKr <sup>+</sup> +CS | 18.7              | -                   | -                 | -                | -                 | -              | _     | -1.81        | -1.81 |
| OBXeCS <sup>+</sup>  | OBXe <sup>+</sup> +CS | 25.9              | -                   | -                 | -                | -                 | -              | _     | -2.05        | -2.05 |
| OBRnCS <sup>+</sup>  | OBRn⁺+CS              | 35.3              | -                   | -                 | -                | -                 | -              | -0.67 | -2.42        | -2.42 |
| OBKrNN⁺              | OBKr <sup>+</sup> +NN | 4.19              | -                   | -                 | -                | -5.93             | -              |       | -0.73        | -0.73 |
| OBXeNN <sup>+</sup>  | OBXe⁺+NN              | 5.08              | -                   | -                 | -                | -5.35             | -              | _     | -0.73        | -0.73 |
| OBRnNN⁺              | OBRn⁺+NN              | 7.48              | -                   | -                 | -                | -4.96             | -              | -     | -0.83        | -0.83 |
| NNKrNSi <sup>+</sup> | NN+KrNSi⁺             | 4.66              | -                   | -                 | -                | -4.93             | -              | _     |              |       |
| NNXeNSi              | NN+XeNSi              | 6.27              | -                   | -                 | -                | -4.87             | -              | _     | -0.62        | -0.62 |
| <u>NNRnNSi</u>       | NN+RnNSi              | 8.98              |                     |                   | -                | -4.61             |                |       | -0.75        | -0.75 |

| SCKrNSi <sup>+</sup> | SC+KrNSi <sup>+</sup>  | 30.4 | - | - | - | -     | - | -0.57 | -1.75 | -1.75 |
|----------------------|------------------------|------|---|---|---|-------|---|-------|-------|-------|
| SCXeNSi <sup>+</sup> | SC+XeNSi⁺              | 42.7 | - | - | - | -     | - | -1.00 | -2.50 | -2.50 |
| SCRnNSi <sup>+</sup> | SC+RnNSi <sup>+</sup>  | 51.3 | - | - | - | -     | - | -1.32 | -2.98 | -2.98 |
| SiOKrNSi⁺            | SiO+KrNSi <sup>+</sup> | 30.2 | - | - | - | -     | - | -0.59 | -2.29 | -2.29 |
| SiOXeNSi             | SiO+XeNSi              | 39.6 | - | - | - | -     | - | -0.93 | -2.72 | -2.72 |
| SiORnNSi             | SiO+RnNSi              | 45.7 | - | - | - | -     | - | -1.16 | -3.11 | -3.11 |
| NCKrOSi <sup>+</sup> | NCKr <sup>+</sup> +OSi | 40.2 | - | - | - | -     | - | -0.78 | -4.26 | -4.26 |
| NCXeOSi <sup>+</sup> | NCXe++OSi              | 50.2 | - | - | - | -     | - | -1.05 | -4.40 | -4.40 |
| NCRnOSi <sup>+</sup> | NCRn⁺+OS               | 57.9 | - | - | - | -     | - | -1.28 | -4.91 | -4.91 |
| SCKrCN <sup>+</sup>  | SC+KrCN⁺               | 44.8 | - | - | - | -     | - | -0.70 | -3.17 | -3.17 |
| SCXeCN <sup>+</sup>  | SC+XeCN <sup>+</sup>   | 56.1 | - | - | - | -     | - | -1.11 | -3.78 | -3.78 |
| SCRnCN <sup>+</sup>  | SC+RnCN⁺               | 67.7 | - | - | - | -     | - | -1.58 | -4.41 | -4.41 |
| NNKrCN <sup>+</sup>  | NN+KrCN <sup>+</sup>   | 9.72 | - | - | - | -7.73 | - | _     | -1.21 | -1.21 |
| NNXeCN <sup>+</sup>  | NN+XeCN <sup>+</sup>   | 12.3 | - | - | - | -6.58 | - | _     | -1.30 | -1.30 |
| NNRnCN <sup>+</sup>  | NN+RnCN <sup>+</sup>   | 17.8 | - | - | - | -5.50 | - | _     | -1.58 | -1.58 |
| HCCKrNN              | HCCKr⁺+N               | 7.49 | - | - | - | -6.27 | - | _     | -0.92 | -0.92 |
| HCCXeN               | HCCXe++N               | 9.70 | - | - | - | -5.53 | - | _     | -1.02 | -1.02 |
| HCCRnN               | HCCRn⁺+N               | 14.3 | - | - | - | -4.55 | - | _     | -1.24 | -1.24 |
| HCCKrCO              | HCCKr <sup>+</sup> +C  | 11.1 | - | - | - | -9.34 | - | _     | -0.72 | -0.72 |
| HCCXeCO              | HCCXe++C               | 15.0 | - | - | - | -8.96 | - | _     | -0.86 | -0.86 |
| HCCRnC               | HCCRn⁺+C               | 21.2 | - | - | - | -8.00 | - | _     | -1.08 | -1.08 |
| HCCKrOSi             | HCCKr⁺+O               | 30.0 | - | - | - | -     | - | -0.60 | -3.09 | -3.09 |
| HCCXeOS              | HCCXe++O               | 39.0 | - | - | - | -     | - | -0.84 | -3.29 | -3.29 |
| HCCRnOS              | HCCRn⁺+O               | 46.5 | - | - | - | -     | - | -1.04 | -3.72 | -3.72 |
| HCCKrCS <sup>+</sup> | HCCKr <sup>+</sup> +CS | 29.4 | - | - | - | -     | - | _     | -2.14 | -2.14 |
| HCCXeCS              | HCCXe⁺+C               | 40.3 | - | - | - | -     | - | -0.68 | -2.73 | -2.73 |
| HCCRnCS              | HCCRn⁺+C               | 51.8 | - | - | - | -     | - | -1.05 | -3.29 | -3.29 |





**Fig. S8** Plots of deformation densities  $\Delta p(\mathbf{r})$  of the pair-wise orbital interactions between the two fragments OB<sup>-</sup> + NgCN<sup>+</sup> (The first three rows) and OBNg<sup>+</sup> + CN<sup>-</sup> (The last three rows) for OBNgCN compound at the revPBE-D3/TZ2P//MP2/ aug-cc-pVTZ/ cc-pVTZ-PP level. From top to bottom, Ng = Kr, Xe, Rn, respectively. Red and blue denote negative or positive  $\Delta p(\mathbf{r})$ , respectively.

| Table S7 Frequencies (cm <sup>-1</sup> ) and infrared intensity (in parentheses) of some vibrational modes for monovalent |
|---------------------------------------------------------------------------------------------------------------------------|
| cationic compounds of calculated at the level of theory MP2/aug-cc-pVTZ/aug-cc-pVTZ-PP.                                   |

|                      | V.       | N-             | Nova a s             | N                    | _                   | N-v-v-               |
|----------------------|----------|----------------|----------------------|----------------------|---------------------|----------------------|
|                      | v1       | v2             | v 3(O-Ng)            | V4(C-Ng)             | _                   | V5(C-N/C-O)          |
| COKrCN⁺              | 40.9(2)  | 99.4(1)        | 124.9(13)            | 536.2(6)             | -                   | 2066.9(107)          |
| COXeCN <sup>+</sup>  | 41.7(2)  | 102.9(0)       | 126.2(12)            | 502.1(1)             | -                   | 2063.0(140)          |
| CORnCN <sup>+</sup>  | 43.3(1)  | 107.6(9)       | 124.9(13)            | 472.6(0)             | -                   | 2062.3(213)          |
|                      | $\nu_1$  | ν <sub>2</sub> | V <sub>3(C-Ng)</sub> | V <sub>4(B-Ng)</sub> | V <sub>5(О-В)</sub> | V <sub>6(C-O)</sub>  |
| OBKrCO <sup>+</sup>  | 37.3(2)  | 297.9(35)      | 122.6(9)             | 470.4(8)             | 1966.5(41)          | 2148.7(7)            |
| OBXeCO <sup>+</sup>  | 37.6(1)  | 291.2(26)      | 122.4(9)             | 429.6(3)             | 1951.8(33)          | 2149.7(6)            |
| OBRnCO⁺              | 38.4(1)  | 291.6(22)      | 132.9(8)             | 401.6(2)             | 1947.9(29)          | 2152.9(5)            |
|                      | $\nu_1$  | v <sub>2</sub> | $v_{3(O-Ng)}$        | V <sub>4(B-Ng)</sub> | ν <sub>5(O-B)</sub> | V <sub>6(O-Si)</sub> |
| OBKrOSi <sup>+</sup> | 65.0(13) | 319.4(28)      | 170.2(29)            | 474.9(0)             | 1971.6(49)          | 1168.6(259)          |
| OBXeOSi⁺             | 46.0(0)  | 313.6(19)      | 167.5(32)            | 429.0(0)             | 1953.4(40)          | 1164.4(318)          |
| OBRnOSi⁺             | 44.4(0)  | 310.1(18)      | 169.5(26)            | 399.6(0)             | 1947.6(36)          | 1166.9(333)          |
|                      | $\nu_1$  | ν <sub>2</sub> | V <sub>3(C-Ng)</sub> | V4(B-Ng)             | ν <sub>5(O-B)</sub> | V <sub>6(C-S)</sub>  |
| OBKrCS <sup>+</sup>  | 44.4(0)  | 316.0(28)      | 135.3(22)            | 459.4(0)             | 1963.7(29)          | 1353.9(0)            |
| OBXeCS <sup>+</sup>  | 43.4(0)  | 310.9(19)      | 135.9(24)            | 414.9(1)             | 1945.2(21)          | 1358.3(0)            |
| OBRnCS <sup>+</sup>  | 41.8(0)  | 306.8(15)      | 141.0(21)            | 384.6(1)             | 1938.6(17)          | 1364.0(0)            |
|                      | $\nu_1$  | v <sub>2</sub> | $v_{3(N-Ng)}$        | V <sub>4(B-Ng)</sub> | ν <sub>5(O-B)</sub> | $v_{6(N-N)}$         |
| OBKrNN <sup>+</sup>  | 31.5(2)  | 291.2(35)      | 108.75(7.99)         | 472.58(11.82         | 1968.5(45)          | 2188.0(11)           |
|                      |          |                |                      | )                    |                     |                      |
| OBXeNN <sup>+</sup>  | 32.4(1)  | 285.8(26)      | 113.5(7)             | 432.8(6)             | 1953.2(37)          | 2186.0(14)           |
| OBRnNN⁺              | 33.9(1)  | 285.3(22)      | 125.2(0)             | 405.2(4)             | 1949.0(34)          | 2186.1(17)           |

|                                                                                                                                                                                                                        | ν <sub>1</sub>                                                                                                                                                                                                                                        | v <sub>2</sub>                                                                                                                                                                                                                                                         | V <sub>3(N-Ng)</sub>                                                                                                                                                                                                                     | V <sub>4(Ng-N)</sub>                                                                                                                                                                                                                  | V <sub>5(N-Si)</sub>                                                                                                                                                                                                       | V <sub>6(N-N)</sub>                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NNKrNSi <sup>+</sup>                                                                                                                                                                                                   | 33.9(1)                                                                                                                                                                                                                                               | 153.6(28)                                                                                                                                                                                                                                                              | 108.6(13)                                                                                                                                                                                                                                | 397.6(20)                                                                                                                                                                                                                             | 1251.2(55)                                                                                                                                                                                                                 | 2187.2(15)                                                                                                                                                                                                          |
| NNXeNSi <sup>+</sup>                                                                                                                                                                                                   | 36.0(1)                                                                                                                                                                                                                                               | 170.2(24)                                                                                                                                                                                                                                                              | 116.2(14)                                                                                                                                                                                                                                | 382.9(4)                                                                                                                                                                                                                              | 1263.2(129)                                                                                                                                                                                                                | 2184.3(19)                                                                                                                                                                                                          |
| NNRnNSi <sup>+</sup>                                                                                                                                                                                                   | 36.6(1)                                                                                                                                                                                                                                               | 183.7(22)                                                                                                                                                                                                                                                              | 128.9(14)                                                                                                                                                                                                                                | 359.0(3)                                                                                                                                                                                                                              | 1261.4(127)                                                                                                                                                                                                                | 2185.7(25)                                                                                                                                                                                                          |
|                                                                                                                                                                                                                        | $v_1$                                                                                                                                                                                                                                                 | v <sub>2</sub>                                                                                                                                                                                                                                                         | V <sub>3(C-Ng)</sub>                                                                                                                                                                                                                     | V4(Ng-N)                                                                                                                                                                                                                              | V5(N-Si)                                                                                                                                                                                                                   | $v_{6(S-C)}$                                                                                                                                                                                                        |
| SCKrNSi <sup>+</sup>                                                                                                                                                                                                   | 46.1(6)                                                                                                                                                                                                                                               | 251.4(25)                                                                                                                                                                                                                                                              | 146.8(84)                                                                                                                                                                                                                                | 366.9(22)                                                                                                                                                                                                                             | 1243.3(319)                                                                                                                                                                                                                | 1374.0(4)                                                                                                                                                                                                           |
| SCXeNSi <sup>+</sup>                                                                                                                                                                                                   | 43.1(5)                                                                                                                                                                                                                                               | 255.3(24)                                                                                                                                                                                                                                                              | 151.4(59)                                                                                                                                                                                                                                | 356.3(24)                                                                                                                                                                                                                             | 1253.9(378)                                                                                                                                                                                                                | 1374.1(2)                                                                                                                                                                                                           |
| SCRnNSi <sup>+</sup>                                                                                                                                                                                                   | 41.3(5)                                                                                                                                                                                                                                               | 250.1(21)                                                                                                                                                                                                                                                              | 159.3(44)                                                                                                                                                                                                                                | 336.4(14)                                                                                                                                                                                                                             | 1252.2(329)                                                                                                                                                                                                                | 1377.9(1)                                                                                                                                                                                                           |
|                                                                                                                                                                                                                        | $\nu_1$                                                                                                                                                                                                                                               | $v_2$                                                                                                                                                                                                                                                                  | V <sub>3(O-Ng)</sub>                                                                                                                                                                                                                     | V <sub>4(Ng-N)</sub>                                                                                                                                                                                                                  | $v_{5(Si-O)}$                                                                                                                                                                                                              | $v_{6(N-Si)}$                                                                                                                                                                                                       |
| SiOKrNSi⁺                                                                                                                                                                                                              | 44.6(11)                                                                                                                                                                                                                                              | 204.9(40)                                                                                                                                                                                                                                                              | 175.0(68)                                                                                                                                                                                                                                | 393.7(4)                                                                                                                                                                                                                              | 1261.8(126)                                                                                                                                                                                                                | 1164.2(460)                                                                                                                                                                                                         |
| SiOXeNSi <sup>+</sup>                                                                                                                                                                                                  | 43.8(10)                                                                                                                                                                                                                                              | 210.4(36)                                                                                                                                                                                                                                                              | 175.9(62)                                                                                                                                                                                                                                | 374.3(9)                                                                                                                                                                                                                              | 1268.2(187)                                                                                                                                                                                                                | 1165.6(508)                                                                                                                                                                                                         |
| SiORnNSi⁺                                                                                                                                                                                                              | 41.4(9)                                                                                                                                                                                                                                               | 206.1(34)                                                                                                                                                                                                                                                              | 179.9(52)                                                                                                                                                                                                                                | 350.7(4)                                                                                                                                                                                                                              | 1264.7(164)                                                                                                                                                                                                                | 1169.8(510)                                                                                                                                                                                                         |
|                                                                                                                                                                                                                        | $\nu_1$                                                                                                                                                                                                                                               | v <sub>2</sub>                                                                                                                                                                                                                                                         | V <sub>3(C-Ng)</sub>                                                                                                                                                                                                                     | V <sub>4(O-Ng)</sub>                                                                                                                                                                                                                  | V <sub>5(O-Si)</sub>                                                                                                                                                                                                       | V6(N-C)                                                                                                                                                                                                             |
| NCKrOSi <sup>+</sup>                                                                                                                                                                                                   | 58.7(1)                                                                                                                                                                                                                                               | 138.5(23)                                                                                                                                                                                                                                                              | 506.8(23)                                                                                                                                                                                                                                | 205.7(55)                                                                                                                                                                                                                             | 1161.5(435)                                                                                                                                                                                                                | 2075.5(86)                                                                                                                                                                                                          |
| NCXeOSi <sup>+</sup>                                                                                                                                                                                                   | 57.1(1)                                                                                                                                                                                                                                               | 145.0(20)                                                                                                                                                                                                                                                              | 476.1(27)                                                                                                                                                                                                                                | 200(49)                                                                                                                                                                                                                               | 1160.3(473)                                                                                                                                                                                                                | 2073.3(91)                                                                                                                                                                                                          |
| NCRnOSi <sup>+</sup>                                                                                                                                                                                                   | 54.3(1)                                                                                                                                                                                                                                               | 146.4(18)                                                                                                                                                                                                                                                              | 451.4(21)                                                                                                                                                                                                                                | 200.3(38)                                                                                                                                                                                                                             | 1165.9(466)                                                                                                                                                                                                                | 2074.9(92)                                                                                                                                                                                                          |
|                                                                                                                                                                                                                        | $\nu_1$                                                                                                                                                                                                                                               | v <sub>2</sub>                                                                                                                                                                                                                                                         | V <sub>3(C-Ng)</sub>                                                                                                                                                                                                                     | V <sub>4(Ng-C)</sub>                                                                                                                                                                                                                  | $v_{5(C-S)}$                                                                                                                                                                                                               | $v_{6(N-C)}$                                                                                                                                                                                                        |
| NCKrCS⁺                                                                                                                                                                                                                | 59.6(0)                                                                                                                                                                                                                                               | 179.9(9)                                                                                                                                                                                                                                                               | 169.4(69)                                                                                                                                                                                                                                | 443.3(60)                                                                                                                                                                                                                             | 1380.8(13)                                                                                                                                                                                                                 | 2046.9(196)                                                                                                                                                                                                         |
| NCXeCS <sup>+</sup>                                                                                                                                                                                                    | 55.0(0)                                                                                                                                                                                                                                               | 178.0(8.0)                                                                                                                                                                                                                                                             | 167.9(48)                                                                                                                                                                                                                                | 436.1(49)                                                                                                                                                                                                                             | 1381.4(11)                                                                                                                                                                                                                 | 2054.0(169)                                                                                                                                                                                                         |
| NCRnCS <sup>+</sup>                                                                                                                                                                                                    | 53.5(0)                                                                                                                                                                                                                                               | 182.3(6)                                                                                                                                                                                                                                                               | 171.4(35)                                                                                                                                                                                                                                | 419.0(37)                                                                                                                                                                                                                             | 1385.9(7)                                                                                                                                                                                                                  | 2056.9(161)                                                                                                                                                                                                         |
|                                                                                                                                                                                                                        | $v_1$                                                                                                                                                                                                                                                 | $\nu_2$                                                                                                                                                                                                                                                                | V <sub>3(N-Ng)</sub>                                                                                                                                                                                                                     | V <sub>4(C-Ng)</sub>                                                                                                                                                                                                                  | V <sub>5(N-N)</sub>                                                                                                                                                                                                        | $\mathcal{V}_{6(N-C)}$                                                                                                                                                                                              |
| NCKrNN <sup>+</sup>                                                                                                                                                                                                    | 46.6(2)                                                                                                                                                                                                                                               | 135.0(1)                                                                                                                                                                                                                                                               | 133.5(14)                                                                                                                                                                                                                                | 532.1(4)                                                                                                                                                                                                                              | 2187.2(22)                                                                                                                                                                                                                 | 2066.0(36)                                                                                                                                                                                                          |
| NCXeNN <sup>+</sup>                                                                                                                                                                                                    | 46.9(2)                                                                                                                                                                                                                                               | 137.8(0)                                                                                                                                                                                                                                                               | 133.3(14)                                                                                                                                                                                                                                | 497.4(0)                                                                                                                                                                                                                              | 2184.2(26)                                                                                                                                                                                                                 | 2062.4(56)                                                                                                                                                                                                          |
| NCRnNN <sup>+</sup>                                                                                                                                                                                                    | 48.8(1)                                                                                                                                                                                                                                               | 150.2(0)                                                                                                                                                                                                                                                               | 143.1(13)                                                                                                                                                                                                                                | 468.6(0)                                                                                                                                                                                                                              | 2184.5(30)                                                                                                                                                                                                                 | 2063.6(66)                                                                                                                                                                                                          |
|                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                        | $\nu_1$                                                                                                                                                                                                                                               | v <sub>2</sub>                                                                                                                                                                                                                                                         | V <sub>3(N-Ng)</sub>                                                                                                                                                                                                                     | V <sub>4(C-Ng)</sub>                                                                                                                                                                                                                  | ν <sub>5(C-C)</sub>                                                                                                                                                                                                        | V <sub>6(N-N)</sub>                                                                                                                                                                                                 |
| HCCKrNN⁺                                                                                                                                                                                                               | ν <sub>1</sub><br>41.7(0)                                                                                                                                                                                                                             | v <sub>2</sub><br>206.5(9)                                                                                                                                                                                                                                             | v <sub>3(N-Ng)</sub><br>120.8(10)                                                                                                                                                                                                        | V <sub>4(C-Ng)</sub><br>596.3(0)                                                                                                                                                                                                      | v <sub>5(c-c)</sub><br>2115.9(21)                                                                                                                                                                                          | v <sub>6(N-N)</sub><br>2188.6(14)                                                                                                                                                                                   |
| HCCKrNN⁺<br>HCCXeNN⁺                                                                                                                                                                                                   | v <sub>1</sub><br>41.7(0)<br>42.7(0)                                                                                                                                                                                                                  | v <sub>2</sub><br>206.5(9)<br>207.8(10)                                                                                                                                                                                                                                | v <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)                                                                                                                                                                                           | v <sub>4(C-Ng)</sub><br>596.3(0)<br>547.5(1)                                                                                                                                                                                          | v <sub>5(C-C)</sub><br>2115.9(21)<br>2089.4(31)                                                                                                                                                                            | v <sub>6(N-N)</sub><br>2188.6(14)<br>2187.1(17)                                                                                                                                                                     |
| HCCKrNN⁺<br>HCCXeNN⁺<br>HCCRnNN⁺                                                                                                                                                                                       | v <sub>1</sub><br>41.7(0)<br>42.7(0)<br>44.1(1)                                                                                                                                                                                                       | v <sub>2</sub><br>206.5(9)<br>207.8(10)<br>202.6(9)                                                                                                                                                                                                                    | v <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)<br>132.9(9)                                                                                                                                                                               | v <sub>4(C-Ng)</sub><br>596.3(0)<br>547.5(1)<br>512.6(2)                                                                                                                                                                              | v <sub>5(c-c)</sub><br>2115.9(21)<br>2089.4(31)<br>2081.6(29)                                                                                                                                                              | <pre>v<sub>6(N-N)</sub> 2188.6(14) 2187.1(17) 2186.3(21)</pre>                                                                                                                                                      |
| HCCKrNN⁺<br>HCCXeNN⁺<br>HCCRnNN⁺                                                                                                                                                                                       | v <sub>1</sub><br>41.7(0)<br>42.7(0)<br>44.1(1)<br>v <sub>1</sub>                                                                                                                                                                                     | v <sub>2</sub><br>206.5(9)<br>207.8(10)<br>202.6(9)<br>v <sub>2</sub>                                                                                                                                                                                                  | V <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)<br>132.9(9)<br>V <sub>3(C-Ng)</sub>                                                                                                                                                       | V <sub>4(C-Ng)</sub><br>596.3(0)<br>547.5(1)<br>512.6(2)<br>V <sub>4(Ng-C)</sub>                                                                                                                                                      | ν <sub>5(c-c)</sub><br>2115.9(21)<br>2089.4(31)<br>2081.6(29)<br>ν <sub>5(c-c)</sub>                                                                                                                                       | $v_{6(N-N)}$<br>2188.6(14)<br>2187.1(17)<br>2186.3(21)<br>$v_{6(C-O)}$                                                                                                                                              |
| HCCKrNN⁺<br>HCCXeNN⁺<br>HCCRnNN⁺<br>HCCKrCO⁺                                                                                                                                                                           | ν <sub>1</sub><br>41.7(0)<br>42.7(0)<br>44.1(1)<br>ν <sub>1</sub><br>48.9(1)                                                                                                                                                                          | ν <sub>2</sub><br>206.5(9)<br>207.8(10)<br>202.6(9)<br>ν <sub>2</sub><br>219.2(6)                                                                                                                                                                                      | V <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)<br>132.9(9)<br>V <sub>3(C-Ng)</sub><br>130.4(13)                                                                                                                                          | V <sub>4(C-Ng)</sub><br>596.3(0)<br>547.5(1)<br>512.6(2)<br>V <sub>4(Ng-C)</sub><br>588.6(0)                                                                                                                                          | $v_{5(c-c)}$<br>2115.9(21)<br>2089.4(31)<br>2081.6(29)<br>$v_{5(c-c)}$<br>2113.6(25)                                                                                                                                       | $v_{6(N-N)}$<br>2188.6(14)<br>2187.1(17)<br>2186.3(21)<br>$v_{6(C-O)}$<br>2153.4(6)                                                                                                                                 |
| HCCKrNN <sup>+</sup><br>HCCXeNN <sup>+</sup><br>HCCRnNN <sup>+</sup><br>HCCKrCO <sup>+</sup><br>HCCXeCO <sup>+</sup>                                                                                                   | <pre>v<sub>1</sub> 41.7(0) 42.7(0) 44.1(1) v<sub>1</sub> 48.9(1) 49.4(1)</pre>                                                                                                                                                                        | <ul> <li>v<sub>2</sub></li> <li>206.5(9)</li> <li>207.8(10)</li> <li>202.6(9)</li> <li>v<sub>2</sub></li> <li>219.2(6)</li> <li>219.2(6)</li> </ul>                                                                                                                    | V <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)<br>132.9(9)<br>V <sub>3(C-Ng)</sub><br>130.4(13)<br>133.0(13)                                                                                                                             | V <sub>4(C-Ng)</sub><br>596.3(0)<br>547.5(1)<br>512.6(2)<br>V <sub>4(Ng-C)</sub><br>588.6(0)<br>539.4(5)                                                                                                                              | $v_{5(c-c)}$<br>2115.9(21)<br>2089.4(31)<br>2081.6(29)<br>$v_{5(c-c)}$<br>2113.6(25)<br>2086.3(37)                                                                                                                         | $v_{6(N-N)}$<br>2188.6(14)<br>2187.1(17)<br>2186.3(21)<br>$v_{6(C-O)}$<br>2153.4(6)<br>2154.9(4)                                                                                                                    |
| HCCKrNN <sup>+</sup><br>HCCXeNN <sup>+</sup><br>HCCRnNN <sup>+</sup><br>HCCKrCO <sup>+</sup><br>HCCXeCO <sup>+</sup><br>HCCRnCO <sup>+</sup>                                                                           | $v_1$<br>41.7(0)<br>42.7(0)<br>44.1(1)<br>$v_1$<br>48.9(1)<br>49.4(1)<br>49.2(1)                                                                                                                                                                      | <ul> <li>v<sub>2</sub></li> <li>206.5(9)</li> <li>207.8(10)</li> <li>202.6(9)</li> <li>v<sub>2</sub></li> <li>219.2(6)</li> <li>219.2(6)</li> <li>218.7(4)</li> </ul>                                                                                                  | V <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)<br>132.9(9)<br>V <sub>3(C-Ng)</sub><br>130.4(13)<br>133.0(13)<br>142.5(12)                                                                                                                | $V_{4(C-Ng)}$<br>596.3(0)<br>547.5(1)<br>512.6(2)<br>$V_{4(Ng-C)}$<br>588.6(0)<br>539.4(5)<br>503.2(6)                                                                                                                                | $v_{5(c-c)}$<br>2115.9(21)<br>2089.4(31)<br>2081.6(29)<br>$v_{5(c-c)}$<br>2113.6(25)<br>2086.3(37)<br>2076.9(35)                                                                                                           | $v_{6(N-N)}$<br>2188.6(14)<br>2187.1(17)<br>2186.3(21)<br>$v_{6(C-O)}$<br>2153.4(6)<br>2154.9(4)<br>2157.9(3)                                                                                                       |
| HCCKrNN <sup>+</sup><br>HCCXeNN <sup>+</sup><br>HCCRnNN <sup>+</sup><br>HCCKrCO <sup>+</sup><br>HCCXeCO <sup>+</sup><br>HCCRnCO <sup>+</sup>                                                                           | <pre>V1 41.7(0) 42.7(0) 44.1(1) V1 48.9(1) 49.4(1) 49.2(1) V1</pre>                                                                                                                                                                                   | <ul> <li>V<sub>2</sub></li> <li>206.5(9)</li> <li>207.8(10)</li> <li>202.6(9)</li> <li>V<sub>2</sub></li> <li>219.2(6)</li> <li>219.2(6)</li> <li>218.7(4)</li> <li>V<sub>2</sub></li> </ul>                                                                           | V <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)<br>132.9(9)<br>V <sub>3(C-Ng)</sub><br>130.4(13)<br>133.0(13)<br>142.5(12)<br>V <sub>3(C-Ng)</sub>                                                                                        | V <sub>4(C-Ng)</sub><br>596.3(0)<br>547.5(1)<br>512.6(2)<br>V <sub>4(Ng-C)</sub><br>588.6(0)<br>539.4(5)<br>503.2(6)<br>V <sub>4(O-Ng)</sub>                                                                                          | $v_{5(c-c)}$<br>2115.9(21)<br>2089.4(31)<br>2081.6(29)<br>$v_{5(c-c)}$<br>2113.6(25)<br>2086.3(37)<br>2076.9(35)<br>$v_{5(c-si)}$                                                                                          | $v_{6(N-N)}$<br>2188.6(14)<br>2187.1(17)<br>2186.3(21)<br>$v_{6(C-O)}$<br>2153.4(6)<br>2154.9(4)<br>2157.9(3)<br>$v_{6(C-C)}$                                                                                       |
| HCCKrNN <sup>+</sup><br>HCCXeNN <sup>+</sup><br>HCCRnNN <sup>+</sup><br>HCCKrCO <sup>+</sup><br>HCCXeCO <sup>+</sup><br>HCCRnCO <sup>+</sup>                                                                           | <pre>V1 41.7(0) 42.7(0) 44.1(1) V1 48.9(1) 49.4(1) 49.2(1) V1 55.2(8)</pre>                                                                                                                                                                           | <ul> <li>V2</li> <li>206.5(9)</li> <li>207.8(10)</li> <li>202.6(9)</li> <li>V2</li> <li>219.2(6)</li> <li>219.2(6)</li> <li>218.7(4)</li> <li>V2</li> <li>250.5(13)</li> </ul>                                                                                         | V <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)<br>132.9(9)<br>V <sub>3(C-Ng)</sub><br>130.4(13)<br>142.5(12)<br>V <sub>3(C-Ng)</sub><br>573.1(16)                                                                                        | $V_{4(C-Ng)}$<br>596.3(0)<br>547.5(1)<br>512.6(2)<br>$V_{4(Ng-C)}$<br>588.6(0)<br>539.4(5)<br>503.2(6)<br>$V_{4(O-Ng)}$<br>183.4(41)                                                                                                  | $v_{5(c-c)}$<br>2115.9(21)<br>2089.4(31)<br>2081.6(29)<br>$v_{5(c-c)}$<br>2113.6(25)<br>2086.3(37)<br>2076.9(35)<br>$v_{5(o-si)}$<br>1168.7(309)                                                                           | $v_{6(N-N)}$<br>2188.6(14)<br>2187.1(17)<br>2186.3(21)<br>$v_{6(C-O)}$<br>2153.4(6)<br>2154.9(4)<br>2157.9(3)<br>$v_{6(C-C)}$<br>2108.2(29)                                                                         |
| HCCKrNN <sup>+</sup><br>HCCXeNN <sup>+</sup><br>HCCRnNN <sup>+</sup><br>HCCKrCO <sup>+</sup><br>HCCXeCO <sup>+</sup><br>HCCRnCO <sup>+</sup><br>HCCKrOSi <sup>+</sup><br>HCCXeOSi <sup>+</sup>                         | <pre>V1 41.7(0) 42.7(0) 44.1(1) V1 48.9(1) 49.4(1) 49.2(1) V1 55.2(8) 53.4(8)</pre>                                                                                                                                                                   | <ul> <li>V2</li> <li>206.5(9)</li> <li>207.8(10)</li> <li>202.6(9)</li> <li>V2</li> <li>219.2(6)</li> <li>219.2(6)</li> <li>218.7(4)</li> <li>V2</li> <li>250.5(13)</li> <li>246.4(16)</li> </ul>                                                                      | V <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)<br>132.9(9)<br>V <sub>3(C-Ng)</sub><br>130.4(13)<br>133.0(13)<br>142.5(12)<br>V <sub>3(C-Ng)</sub><br>573.1(16)<br>523.8(27)                                                              | V <sub>4(C-Ng)</sub><br>596.3(0)<br>547.5(1)<br>512.6(2)<br>V <sub>4(Ng-C)</sub><br>588.6(0)<br>539.4(5)<br>503.2(6)<br>V <sub>4(O-Ng)</sub><br>183.4(41)<br>179.6(41)                                                                | $v_{5(c-c)}$<br>2115.9(21)<br>2089.4(31)<br>2081.6(29)<br>$v_{5(c-c)}$<br>2113.6(25)<br>2086.3(37)<br>2076.9(35)<br>$v_{5(o-si)}$<br>1168.7(309)<br>1167.9(362)                                                            | $v_{6(N-N)}$<br>2188.6(14)<br>2187.1(17)<br>2186.3(21)<br>$v_{6(C-O)}$<br>2153.4(6)<br>2154.9(4)<br>2157.9(3)<br>$v_{6(C-C)}$<br>2108.2(29)<br>2079.6(37)                                                           |
| HCCKrNN <sup>+</sup><br>HCCRnNN <sup>+</sup><br>HCCRnNN <sup>+</sup><br>HCCKrCO <sup>+</sup><br>HCCXeCO <sup>+</sup><br>HCCRnCO <sup>+</sup><br>HCCKrOSi <sup>+</sup><br>HCCKrOSi <sup>+</sup><br>HCCRnOS <sup>+</sup> | $v_1$<br>41.7(0)<br>42.7(0)<br>44.1(1)<br>$v_1$<br>48.9(1)<br>49.4(1)<br>49.2(1)<br>$v_1$<br>55.2(8)<br>53.4(8)<br>51.5(7)                                                                                                                            | $v_2$<br>206.5(9)<br>207.8(10)<br>202.6(9)<br>$v_2$<br>219.2(6)<br>219.2(6)<br>218.7(4)<br>$v_2$<br>250.5(13)<br>246.4(16)<br>239.4(16)                                                                                                                                | V <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)<br>132.9(9)<br>V <sub>3(C-Ng)</sub><br>130.4(13)<br>133.0(13)<br>142.5(12)<br>V <sub>3(C-Ng)</sub><br>573.1(16)<br>523.8(27)<br>491.6(24)                                                 | V <sub>4(C-Ng)</sub><br>596.3(0)<br>547.5(1)<br>512.6(2)<br>V <sub>4(Ng-C)</sub><br>588.6(0)<br>539.4(5)<br>503.2(6)<br>V <sub>4(O-Ng)</sub><br>183.4(41)<br>179.6(41)<br>181.0(33)                                                   | $v_{5(c-c)}$<br>2115.9(21)<br>2089.4(31)<br>2081.6(29)<br>$v_{5(c-c)}$<br>2113.6(25)<br>2086.3(37)<br>2076.9(35)<br>$v_{5(0-si)}$<br>1168.7(309)<br>1167.9(362)<br>1171.3(367)                                             | $v_{6(N-N)}$<br>2188.6(14)<br>2187.1(17)<br>2186.3(21)<br>$v_{6(C-O)}$<br>2153.4(6)<br>2154.9(4)<br>2157.9(3)<br>$v_{6(C-C)}$<br>2108.2(29)<br>2079.6(37)<br>2070.7(32)                                             |
| HCCKrNN <sup>+</sup><br>HCCXeNN <sup>+</sup><br>HCCRnNN <sup>+</sup><br>HCCKrCO <sup>+</sup><br>HCCXeCO <sup>+</sup><br>HCCRnCO <sup>+</sup><br>HCCKrOSi <sup>+</sup><br>HCCXeOSi <sup>+</sup><br>HCCRnOS <sup>+</sup> | <ul> <li>V1</li> <li>41.7(0)</li> <li>42.7(0)</li> <li>44.1(1)</li> <li>V1</li> <li>48.9(1)</li> <li>49.4(1)</li> <li>49.2(1)</li> <li>V1</li> <li>55.2(8)</li> <li>53.4(8)</li> <li>51.5(7)</li> <li>V1</li> </ul>                                   | <ul> <li>V2</li> <li>206.5(9)</li> <li>207.8(10)</li> <li>202.6(9)</li> <li>V2</li> <li>219.2(6)</li> <li>219.2(6)</li> <li>218.7(4)</li> <li>V2</li> <li>250.5(13)</li> <li>246.4(16)</li> <li>239.4(16)</li> <li>V2</li> </ul>                                       | V <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)<br>132.9(9)<br>V <sub>3(C-Ng)</sub><br>130.4(13)<br>133.0(13)<br>142.5(12)<br>V <sub>3(C-Ng)</sub><br>573.1(16)<br>523.8(27)<br>491.6(24)<br>V <sub>3(C-Ng)</sub>                         | $V_{4(C-Ng)}$<br>596.3(0)<br>547.5(1)<br>512.6(2)<br>$V_{4(Ng-C)}$<br>588.6(0)<br>539.4(5)<br>503.2(6)<br>$V_{4(O-Ng)}$<br>183.4(41)<br>179.6(41)<br>181.0(33)<br>$V_{4(Ng-C)}$                                                       | $v_{5(c-c)}$<br>2115.9(21)<br>2089.4(31)<br>2081.6(29)<br>$v_{5(c-c)}$<br>2113.6(25)<br>2086.3(37)<br>2076.9(35)<br>$v_{5(o-5i)}$<br>1168.7(309)<br>1167.9(362)<br>1171.3(367)<br>$v_{5(c-5)}$                             | $\nu_{6(N-N)}$<br>2188.6(14)<br>2187.1(17)<br>2186.3(21)<br>$\nu_{6(C-O)}$<br>2153.4(6)<br>2154.9(4)<br>2157.9(3)<br>$\nu_{6(C-C)}$<br>2108.2(29)<br>2079.6(37)<br>2070.7(32)<br>$\nu_{6(C-C)}$                     |
| HCCKrNN <sup>+</sup><br>HCCRnNN <sup>+</sup><br>HCCRnNN <sup>+</sup><br>HCCKrCO <sup>+</sup><br>HCCRnCO <sup>+</sup><br>HCCKrOSi <sup>+</sup><br>HCCRnOS <sup>+</sup><br>HCCRnOS <sup>+</sup>                          | <ul> <li>V1</li> <li>41.7(0)</li> <li>42.7(0)</li> <li>44.1(1)</li> <li>V1</li> <li>48.9(1)</li> <li>49.4(1)</li> <li>49.2(1)</li> <li>V1</li> <li>55.2(8)</li> <li>53.4(8)</li> <li>51.5(7)</li> <li>V1</li> <li>53.7(4)</li> </ul>                  | <ul> <li>V2</li> <li>206.5(9)</li> <li>207.8(10)</li> <li>202.6(9)</li> <li>V2</li> <li>219.2(6)</li> <li>219.2(6)</li> <li>218.7(4)</li> <li>V2</li> <li>250.5(13)</li> <li>246.4(16)</li> <li>239.4(16)</li> <li>V2</li> <li>260.8(12)</li> </ul>                    | V <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)<br>132.9(9)<br>V <sub>3(C-Ng)</sub><br>130.4(13)<br>142.5(12)<br>V <sub>3(C-Ng)</sub><br>573.1(16)<br>523.8(27)<br>491.6(24)<br>V <sub>3(C-Ng)</sub><br>149(39)                           | $V_{4(C-Ng)}$<br>596.3(0)<br>547.5(1)<br>512.6(2)<br>$V_{4(Ng-C)}$<br>588.6(0)<br>539.4(5)<br>503.2(6)<br>$V_{4(O-Ng)}$<br>183.4(41)<br>179.6(41)<br>181.0(33)<br>$V_{4(Ng-C)}$<br>547.8(34)                                          | $v_{5(c-c)}$<br>2115.9(21)<br>2089.4(31)<br>2081.6(29)<br>$v_{5(c-c)}$<br>2113.6(25)<br>2086.3(37)<br>2076.9(35)<br>$v_{5(0-Si)}$<br>1168.7(309)<br>1167.9(362)<br>1167.9(362)<br>1171.3(367)<br>$v_{5(c-S)}$<br>1368.8(1) | $v_{6(N-N)}$<br>2188.6(14)<br>2187.1(17)<br>2186.3(21)<br>$v_{6(C-O)}$<br>2153.4(6)<br>2154.9(4)<br>2157.9(3)<br>$v_{6(C-C)}$<br>2079.6(37)<br>2070.7(32)<br>$v_{6(C-C)}$<br>2099.0(54)                             |
| HCCKrNN <sup>+</sup><br>HCCXeNN <sup>+</sup><br>HCCRnNN <sup>+</sup><br>HCCKrCO <sup>+</sup><br>HCCRnCO <sup>+</sup><br>HCCKrOSi <sup>+</sup><br>HCCRnOS <sup>+</sup><br>HCCKrCS <sup>+</sup><br>HCCKrCS <sup>+</sup>  | <ul> <li>V1</li> <li>41.7(0)</li> <li>42.7(0)</li> <li>44.1(1)</li> <li>V1</li> <li>48.9(1)</li> <li>49.4(1)</li> <li>49.2(1)</li> <li>V1</li> <li>55.2(8)</li> <li>53.4(8)</li> <li>51.5(7)</li> <li>V1</li> <li>53.7(4)</li> <li>51.2(4)</li> </ul> | <ul> <li>V2</li> <li>206.5(9)</li> <li>207.8(10)</li> <li>202.6(9)</li> <li>V2</li> <li>219.2(6)</li> <li>219.2(6)</li> <li>218.7(4)</li> <li>V2</li> <li>250.5(13)</li> <li>246.4(16)</li> <li>239.4(16)</li> <li>V2</li> <li>260.8(12)</li> <li>263.8(14)</li> </ul> | V <sub>3(N-Ng)</sub><br>120.8(10)<br>123.1(10)<br>132.9(9)<br>V <sub>3(C-Ng)</sub><br>130.4(13)<br>133.0(13)<br>142.5(12)<br>V <sub>3(C-Ng)</sub><br>573.1(16)<br>523.8(27)<br>491.6(24)<br>V <sub>3(C-Ng)</sub><br>149(39)<br>149.2(36) | V <sub>4(C-Ng)</sub><br>596.3(0)<br>547.5(1)<br>512.6(2)<br>V <sub>4(Ng-C)</sub><br>588.6(0)<br>539.4(5)<br>503.2(6)<br>V <sub>4(0-Ng)</sub><br>183.4(41)<br>179.6(41)<br>181.0(33)<br>V <sub>4(Ng-C)</sub><br>547.8(34)<br>502.3(46) | $v_{5(c-c)}$<br>2115.9(21)<br>2089.4(31)<br>2081.6(29)<br>$v_{5(c-c)}$<br>2113.6(25)<br>2086.3(37)<br>2076.9(35)<br>$v_{5(o-Si)}$<br>1167.9(362)<br>1171.3(367)<br>$v_{5(c-S)}$<br>1368.8(1)<br>1371.0(2)                  | $v_{6(N-N)}$<br>2188.6(14)<br>2187.1(17)<br>2186.3(21)<br>$v_{6(C-O)}$<br>2153.4(6)<br>2154.9(4)<br>2157.9(3)<br>$v_{6(C-C)}$<br>2108.2(29)<br>2079.6(37)<br>2070.7(32)<br>$v_{6(C-C)}$<br>2099.0(54)<br>2069.9(63) |

| CCSE | D(T)/ aug-cc-pV | 'TZ/ cc-pVTZ-P | P coordinates: |
|------|-----------------|----------------|----------------|
| C    | DBKrCN          |                |                |
| 0 1  |                 |                |                |
| 0    | 0.000000        | 0.000000       | 3.344581       |
| В    | 0.000000        | 0.000000       | 2.133941       |
| С    | 0.000000        | 0.000000       | -2.289141      |
| Ν    | 0.000000        | 0.000000       | -3.461504      |
| Kr   | 0.000000        | 0.000000       | 0.014973       |
| O    | 3XeCN           |                |                |
| 0 1  |                 |                |                |
| 0    | 0.000000        | 0.000000       | 3.471106       |
| В    | 0.000000        | 0.000000       | 2.259209       |
| С    | 0.000000        | 0.000000       | -2.382170      |
| Ν    | 0.000000        | 0.000000       | -3.553903      |
| Xe   | 0.000000        | 0.000000       | 0.001953       |
| OBI  | RnCN            |                |                |
| 0 1  |                 |                |                |
| 0    | 0.000000        | 0.000000       | -3.551914      |
| В    | 0.000000        | 0.000000       | -2.339190      |
| С    | 0.000000        | 0.000000       | 2.434855       |
| Ν    | 0.000000        | 0.000000       | 3.606035       |
| Rn   | 0.000000        | 0.000000       | 0.003022       |
| C    | DBKrNC          |                |                |
| 0 1  |                 |                |                |
| 0    | 0.000000        | 0.000000       | 3.196839       |
| В    | 0.000000        | 0.000000       | 1.989446       |
| С    | 0.000000        | 0.000000       | -3.429685      |
| Ν    | 0.000000        | 0.000000       | -2.243787      |
| Kr   | 0.000000        | 0.000000       | 0.021186       |
| C    | DBXeNC          |                |                |
| 0 1  |                 |                |                |
| 0    | 0.000000        | 0.000000       | -3.372508      |
| В    | 0.000000        | 0.000000       | -2.162432      |
| С    | 0.000000        | 0.000000       | 3.511971       |
| Ν    | 0.000000        | 0.000000       | 2.326299       |
| Xe   | 0.000000        | 0.000000       | 0.008080       |
| OBR  | nNC             |                |                |
| 0 1  |                 |                |                |
| 0    | 0.000000        | 0.000000       | -3.465074      |
| В    | 0.000000        | 0.000000       | -2.254422      |
| С    | 0.000000        | 0.000000       | 3.555602       |
| Ν    | 0.000000        | 0.000000       | 2.370390       |
| Rn   | 0.000000        | 0.000000       | 0.012400       |