Tuning Excited-State Intramolecular Proton Transfer (ESIPT) process of indolepyrrole systems by π -conjugation and substitution effects: Experimental and Computational studies

Nuonuo Zhang,^{a,c} Tingting Zhang,^a Liu Wen,^a Long Wang,^a Jiaying Yan,^{a,b*} Kaibo Zheng^{a*}

^aCollege of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials,

China Three Gorges University, Hubei, Yichang 443002, PR China

^bState Key Laboratory of Coordination Chemistry, Nanjing University, Jiangsu, Nanjing 210093, PR China

^cMaterial Analysis and Testing Center, China Three Gorges University, Hubei, Yichang 443002, PR China

*Corresponding authors. E-mail addresses: yanjiaying327@126.com; zhengkbo@126.com; zhengkbo@126.com; zhengkbo@126.com; zhengkbo@2126.com; mailto:zhengkbo@2126.com; zhengkbo@2126.com; zhengkbo@2126.com; zhengkbo@2126.com; zhengkbo@2126.com; mailto:zhengkbo@2126.com; mailto:zhengkbo@2126.com; mailto:zhengkbo@2126.com; <

Contents

1 Tables and figures	2
2 Detailed Synthesis and Characterizations	8
3 Procedure for the Synthesis of BNDABs	8

1 Tables and figures

Compounds	N1-H Chemical Shift (ppm)
NDAB-H ^a	15.78
NDAB-6 ^a	16.30
BNDAB-1	16.33
BNDAB-2	16.93
BNDAB-3	15.89
BNDAB-4	16.40

Table S1 Experimental ¹H NMR chemical shifts of the N-H hydrogen in CDCl₃

^aData obtained from Ref: Res Chem Intermed (2017) 43, 5337-5344 and Journal of Molecular Liquids 286 (2019) 110887.

Table S2 Photon	physical prop	perties of AIE	1-4 in differen	nt solvents at room	temperature.
	physical pro		I I III WIIIUU	nt solvents at room	temperature.

Comp.	Solvent	λ_{abs} ($\epsilon/10^5$ M ⁻¹	λ_{ex}	λ_{em}		$\Box \Delta v$	$\Phi_{\rm f} {\rm a}$	τ_{exp}/ns
		cm ⁻¹)(nm)	(nm)	(nm)	(nm)	(cm ⁻¹)	(%)	(pre-exp.
								factor) ^c
NDAB-H ^b	Toluene	305 (2.28),	415	580	165	6855	6.0	580 nm: 0.49
		415 (1.40)						(700.3), 5.58
	DCM	303 (3.07),	411	578	167	7030	5.1	(15.3)
		411 (1.71)						
	MeOH	300 (3.42),	410	580	170	7149	2.8	
		410 (1.83)						
	DMSO	307 (3.98),	416	584	168	6915	11.	
		416 (2.07)					2	
NDAB-6 ^b	Toluene	404 (4.23)	404	580	176	7511	22	570 nm: 0.78
	DCM	299 (1.46),	400	575	175	7600	27	(4010.9), 4.99
	DCIVI	400 (2.89)	400	575	175	/009		(22.7)
	MaOH	307 (0.74),	207	572	176	דבדד	14	
	Meon	397 (2.14)	397	575	170	1131		
	DMSO	309 (2.34),	400	570	170	7720	28	
	DWSO	400 (4.43)	400	579	1/9	1129		
BNDAB-1	Toluene	339 (0.39),	420	510,	73,	3275,	20	500 nm: 1.28
		437 (0.28)		596	159	6105	20	(285.2);
	DCM	331 (0.43),		520,	97,	3864,	15	590 nm: 1.20
		433 (0.31)		595	162	6288	15	(884.5)
	MeOH	329 (0.38),		526,	95,	4190,	0	
		431 (0.26)		592	161	6310	0	
	DMSO	330 (0.42),		536,	98,	4174,	22	
		438 (0.27)		596	158	6053	52	
BNDAB-2	Toluene	416 (0.13)	410	590	174	7089	60	580 nm: 2.16
	DCM	411 (0.18)		584	173	7208	62	(504.1)

	МеОН	407 (0.15)		580	173	7329	27	
	DMSO	409 (0.15)		589	180	7472	40	
BNDAB-3	Toluene	336 (0.25),	410	530,	100,	4388,	10	530 nm: 0.65
		430 (0.25)		596	166	6477	10	(178.5);
	DCM	327 (0.23),		510,	37,	1534,	11	590 nm: 0.57
		473 (0.30)		593	120	4278		(545.7)
	МеОН	326 (0.29),		520,	97,	4410,	4	
		423 (0.27)		590	167	6692	4	
	DMSO	328 (0.31),		528,	99,	4371,	11	
		429 (0.26)		593	164	6447	11	
BNDAB-4	Toluene	400 (0.50)	400	502,	102,1	5080,	0	500 nm: 1.56
				546	46	6685	9	(202.1);
	DCM	402 (0.49)		546	144	6561	2	540 nm: 1.23
	МеОН	396 (0.62)		543	147	6836	1	(372.4)
	DMSO	401 (0.54)]	547	146	6656	6	

Footnote: *a*Fluorescence quantum yields were calculated using Rhodamine B ($\Phi_f \square = 0.49$ in ethanol) or fluorescein ($\Phi_f = 0.90$ in 0.1 N NaOH aqueous solution) as the reference.^bThe data are from Ref: Res Chem Intermed (2017) 43, 5337–5344 and Journal of Molecular Liquids 286 (2019) 110887. ^c Measured in Toluene at room temperature.

Fig. S1 UV-Vis spectra of BNDAB-1-4 in toluene (a), DCM (b), MeOH (c), DMSO (d)

Fig. S2 Emission spectra of BNDAB-1-4 in toluene (a), DCM (b), MeOH (c), DMSO (d)

Fig. 3 The fluorescence decay dynamics in toluene of (a) NDAB-H, (b) NDAB-6, (c) BNDAB-1, (d) BNDAB-2, (e) BNDAB-3, (f) BNDAB-4. Squares (red or cyan) denote data points obtained for normal and/or tautomer emissions, respectively, with monitored wavelengths as depicted, while solid lines correspond to nonlinear fitting curves.

Table S3 The experiment absorption data and calculation data of **BNDABs** in toluene based on TDDFT calculations

Comp.	Observed $\lambda_{abs}(nm)$	Computed λ_{abs} (nm)(<i>f</i>)
	$(\epsilon/10^4 \text{ M}^{-1} \text{ cm}^{-1})$	
BNDAB-1	339 (0.39), 437 (0.28)	343.78 (0.49), 455.65 (0.42)
BNDAB-2	416 (0.13)	347.83 (0.24), 416.84 (0.23), 446.33
		(0.75)
BNDAB-3	336 (0.25), 430 (0.25)	338.62 (0.36), 446.32 (0.48)
BNDAB-4	400 (0.50)	309.37 (0.17), 410.61 (0.34), 437.03
		(0.78)

	Category	N-S ₀	T-S ₀	N-S ₁	T-S ₁	N-S ₁ -
						N-S ₀
NDAB-H	N-H(Å)	1.03514	1.50940	1.06097	1.63142	0.02583
	NH(Å)	1.74973	1.10522	1.65512	1.06747	-0.09461
	Angle(°)	151.76075	159.35021	155.75502	157.47575	3.99427
NDAB-6	N-H(Å)	1.03819	1.50934	1.06721	1.67293	0.02902
	NH(Å)	1.73839	1.10613	1.61522	1.05139	-0.12317
	Angle(°)	151.96211	159.42846	155.61430	155.40165	3.65219
BNDAB-1	N-H(Å)	1.03454	1.52039	1.05392	1.62218	0.01938
	NH(Å)	1.75664	1.10021	1.68201	1.06984	-0.07463
	Angle(°)	152.40036	159.56897	155.35287	158.13365	2.95251
BNDAB-2	N-H(Å)	1.03767	1.52508	1.05895	1.66219	0.02128
	NH(Å)	1.74555	1.09961	1.65368	1.05481	-0.09187
	Angle(°)	152.60301	159.56124	155.66623	156.48710	3.06322
BNDAB-3	N-H(Å)	1.03483	1.48077	1.05699	1.61305	0.02216
	NH(Å)	1.74901	1.11745	1.66401	1.07160	-0.085
	Angle(°)	151.63230	159.71596	155.06347	157.96968	3.43117
BNDAB-4	N-H(Å)	1.03830	1.50015	1.06586	1.65541	0.02756
	NH(Å)	1.73525	1.10956	1.62525	1.05654	-0.11
	Angle(°)	151.93534	159.49063	155.67335	156.21554	3.73801

Table S4 Bond distance and angle of **NDABs** in toluene in N-S₀, N-S₁, T-S₁ states based on DFT and TDDFT calculations

Table S5 Nonconjugation coefficient (ξ) and their corresponding $\Delta \xi$ from tautomer to normal for NDAB-H, BNDAB-1 and BNDAB-3 in ground state and excited state

	nonc	Δ	ξ			
	norma	ıl	tautomer			
	S_0	S_1	S ₀	S_1	S_0	S_1
NDAB-H	0.08906	0.01454	0.06165	0.02403	0.02741	0.00949
BNDAB-1	0.08669	0.02303	0.06070	0.03788	0.02599	0.01485
BNDAB-3	0.08687	0.02647	0.06178	0.03915	0.02509	0.01268

Table S6 Nonconjugation coefficient (ξ) and their corresponding $\Delta \xi$ from tautomer to normal for **NDAB-6**, **BNDAB-2** and **BNDAB-4** in ground state and excited state

		Δ	Δξ			
	nor	mal	tautomer			
	S_0	S_1	S ₀	S_1	S_0	S_1
NDAB-6	0.09402	0.0361	0.07182	0.03174	0.0222	-0.00436
BNDAB-2	0.09194	0.00055	0.07116	0.02693	0.02078	0.02638
BNDAB-4	0.09158	0.00933	0.0708	0.02837	0.02078	0.01904

Fig. S4 Schematic graph of energy barrier

Table S7 The major transition configuration of excited states of BNDAB-1-4 in toluene

	Wayalangt	Oca	Major contriba
name	wavelengt	Osc.	Major contribs
	h (nm)	Strength	(>15%)
BNDAB-1	455.65	0.4179	HOMO->LUMO (99.6%)
	343.78	0.4926	H-1->LUMO (25.9%), HOMO->L+1 (72.9%)
BNDAB-2	446.33	0.7538	HOMO->LUMO (89.2%)
	416.84	0.2329	HOMO->L+1 (89.1%)
	347.83	0.2413	H-1->L+1 (95.8%)
BNDAB-3	446.32	0.4795	HOMO->LUMO (99.5%)
	338.62	0.3757	H-1->LUMO (57.6%), HOMO->L+2 (37.3%)
BNDAB-4	437.03	0.7837	HOMO->LUMO (90.3%)
	410.61	0.3381	HOMO->L+1 (90.2%)
	309.37	0.17	H-2->LUMO (52.2%), H-2->L+1 (19.4%),
			H-1->L+2 (17.0%)

Fig. S5 Computed frontier orbitals for NDAB-6, BNDAB-2, BNDAB-4 in their normal form

involved in the first singlet excitation in toluene.

compounds	Energy (eV)					
	HOMO-1	НОМО	LUMO	LUMO+1	Gap	
NDAB-H	-0.60491	-1.29718	-4.68312	-5.82274	3.39	
NDAB-6	-1.56195	-1.84304	-5.09102	-6.12071	3.25	
BNDAB-1	-0.65743	-1.49065	-4.66026	-5.47987	3.17	
BNDAB-2	-1.69936	-1.89257	-5.08449	-5.74382	3.19	
BNDAB-3	-0.83023	-1.44602	-4.66842	-5.56232	3.22	
BNDAB-4	-1.6248	-1.80495	-5.06	-5.77947	3.26	

Table S8 Orbits energy

Table S9 Calculated N-S₀, T-S₀ states energy of NDAB-H, NDAB-6 and BNDAAB-1-4 and the energy difference between the ground-state normal and tautomer forms (ΔE_3) in toluene based on DFT calculations

S ₀	normal	tautomer	ΔE_3
NDAB-H	-975.92215	-975.90860	8.5028
BNDAB-1	-1129.56598	-1129.55238	8.5341
BNDAB-3	-1129.56323	-1129.54938	8.6910
NDAB-6	-1510.31665	-1510.30446	7.6493
BNDAB-2	-1663.96034	-1663.94818	7.6305
BNDAB-4	-1663.97325	-1663.96108	7.6370

Note: ΔE_3 : the energy difference between the ground-state normal and tautomer forms $\Delta E (eV) = E_{T-S0}-E_{N-S0}$

Table S10 Calculated potential energy of **NDABs** in toluene N-S₁, highest energy in S₁ (H-S₁) state, T-S₁ states based on DFT and TDDFT calculations

	Energy (hartree)			ΔE_1	ΔE_2
Entry	N-S ₁	H-S ₁	$T-S_1$	(Kcal/	(Kcal/
				mol)	mol)
NDAB-H	-975.82197	-975.81826	-975.82181	0.0992	2.3153
BNDAB-1	-1129.47262	-1129.46738	-1129.47045	1.3617	3.2882
BNDAB-3	-1129.46788	-1129.46330	-1129.46614	1.0919	2.8740
NDAB-6	-1510.21546	-1510.21408	-1510.22160	-3.8529	0.8660
BNDAB-2	-1663.86469	-1663.86173	-1663.86796	-2.0520	1.8574
BNDAB-4	-1663.87539	-1663.87318	-1663.87916	-2.3657	1.3868

Note: $\Delta E(eV) = E_{T-S1}-E_{N-S1}$; $\Delta E(eV) = E_{H-S1}-E_{N-S1}$

2 Detailed Synthesis and Characterizations

All reagents and solvents were obtained from commercial sources and used without further purification, unless otherwise noted. All chromatographic separations were carried out on silica gel (300-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker 400 MHz spectrometer at 298 K. CDCl₃ was used as solvent and TMS as internal reference. The chemical shifts were reported in parts per million (δ) relative to the appropriate reference signal: residual chloroform (δ_H 7.26). High resolution mass spectra were measured on Bruker APCI instrument or SYNAPT G2 analysis instrument. UV–Vis spectra in various solvents were detected on Shimadzu UV-2600 in 10 mm quartz cell spectrometer. Fluorescence spectra were obtained using a Shimadzu FL-4500 spectrometer, emission wavelengths λ are reported in nm.

3 Procedure for the Synthesis of BNDABs

To a mixture of substituted 2,3,3-trimethylbenzoindole (1 mmol), 4-acetyl-2formylpyrrole or 2-formylpyrrole (2 mmol), AcOH (86 uL, 1.5 mmol) and piperidine (0.1mL, 1.4 mmol) in toluene (50 mL) was added and the mixture was refluxed for 4 h. The completion of reaction was confirmed by TLC. The brown dark reaction mixture was cooled, concentrated to viscous liquid and chromatographic separation. By column chromatography (silica gel, petroleum/dichloromethane 4:1 to 1:3) to give the corresponding product **BNDABs** as a solid.

BNDAB-1: Orange red solid, 130 mg, yield: 36%, 4 h.

¹H NMR (400 MHz, CDCl₃) δ = 16.33 (s, 1H), 8.57 (d, *J*=8.3, 1H), 7.94 (d, *J*=8.3, 1H), 7.75 (d, *J*=8.2, 1H), 7.67 (t, *J*=7.2, 1H), 7.57 – 7.49 (m, 2H), 7.29 (d, *J*=1.1, 1H), 6.81 – 6.76 (m, 2H), 6.69 (d, *J*=1.6, 1H), 6.55 (dd, *J*=5.8, 2.5, 1H), 6.50 (dt, *J*=6.0, 1.9, 1H), 4.76 (s, 2H), 1.71 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 181.18, 147.61, 142.48, 139.82, 133.91, 129.01, 128.61, 128.44, 126.23, 125.93, 125.55, 125.43, 124.81, 122.99, 122.49, 119.37, 117.91, 115.63, 109.71, 106.72, 99.75, 55.20, 54.90, 25.24. HRMS (ESI) Calcd. for C₂₅H₂₁N₃ [M+H]⁺: 364.1735, found 364.1800.


```
Fig. S6<sup>1</sup>H NMR spectra of BNDAB-1
```


Fig. S7¹³C NMR spectra of **BNDAB-1**

Fig. S8 HRMS (ESI) spectra of BNDAB-1

BNDAB-2: Orange solid, 142 mg, yield: 28%, 4 h.

¹H NMR (400 MHz, CDCl₃) δ 16.93 (s, 1H), 8.46 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.88 (dd, J = 2.7, 1.2 Hz, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.59 (t, J = 1.8 Hz, 1H), 7.58 – 7.55 (m, 1H), 7.52 (d, J = 8.2 Hz, 1H), 7.15 (s, 1H), 7.06 (s, 1H), 4.98 (s, 2H), 4.38 (dq, J = 11.8, 7.1 Hz, 5H), 1.70 (s, 6H), 1.42 (dd, J = 4.5, 2.6 Hz, 7H). ¹³C NMR (101 MHz, CDCl₃) δ = 180.41, 165.37, 163.25, 146.70, 142.73, 138.40, 133.89, 131.99, 130.22, 129.26, 128.57, 126.70, 125.86, 125.83, 125.78, 125.62, 123.70, 122.57, 119.27, 117.84, 117.78, 108.53, 105.51, 60.96, 60.08, 55.39, 54.05, 46.02, 25.12, 24.43, 24.42, 22.69, 14.66, 14.48, 8.53, 0.02. HRMS (ESI) Calcd. for C₃₁ H₂₉N₃O₄ [M+H]⁺: 508.2231, found 508.2218.

Fig. S11 HRMS (ESI) spectra of BNDAB-2

BNDAB-3: Orange red solid, 143 mg, yield: 39%, 4 h.

¹H NMR (400 MHz, CDCl₃) δ 15.89 (s, 1H), 8.15 (d, *J* = 8.5 Hz, 1H), 7.98 (d, *J* = 8.2 Hz, 1H), 7.89 (q, *J* = 8.5 Hz, 2H), 7.58 (ddd, *J* = 8.3, 6.9, 1.2 Hz, 1H), 7.48 – 7.41 (m, 1H), 7.16 (d, *J* = 1.2 Hz, 1H), 6.83 (s, 1H), 6.80 (dt, *J* = 6.0, 2.1 Hz, 1H), 6.72 – 6.64 (m, 1H), 6.50 (ddt, *J* = 8.0, 6.0, 2.2 Hz, 2H), 4.75 (s, 2H), 1.92 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 183.06, 149.48, 139.72, 139.08, 132.20, 129.88, 129.06, 129.02, 128.57, 128.25, 126.36, 125.29, 123.98, 122.50, 122.48, 119.24, 117.82, 115.10, 109.53, 106.78, 99.74, 55.90, 54.98, 25.04. HRMS (ESI) Calcd. for C₂₅H₂₁N₃ [M+H]⁺: 364.1735, found 364.1805.


```
Fig. S12 <sup>1</sup>H NMR spectra of BNDAB-3
```


Fig. S13 ¹³C NMR spectra of **BNDAB-3**

Fig. S14 HRMS (ESI) spectra of BNDAB-3

BNDAB-4: Orange solid, 113 mg, yield: 22%, 4 h.

¹H NMR (400 MHz, CDCl₃) δ = 16.40 (s, 1H), 8.13 (d, *J*=8.4, 1H), 7.98 (d, *J*=8.1, 1H), 7.92 (d, *J*=8.5, 1H), 7.82 (d, *J*=8.5, 1H), 7.74 (s, 1H), 7.59 (t, *J*=1.8, 2H), 7.50 – 7.44 (m, 1H), 7.13 (s, 1H), 7.10 (s, 1H), 4.97 (s, 2H), 4.37 (dd, *J*=7.1, 2.9, 4H), 1.90 (s, 6H), 1.41 (td, *J*=7.1, 3.3, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 182.20, 165.19, 163.12, 148.56, 139.34, 138.26, 132.48, 131.99, 130.08, 129.93, 129.32, 128.11, 126.62, 125.40, 124.47, 123.58, 122.51, 119.00, 117.73, 117.23, 108.62, 105.40, 60.89, 59.93, 56.06, 54.15, 24.99, 14.63, 14.51. HRMS (ESI) Calcd. for C₃₁ H₂₉N₃O₄ [M+H]⁺: 508.22318, found 508.2213.


```
Fig. S15<sup>1</sup>H NMR spectra of BNDAB-4
```


Fig. S16¹³C NMR spectra of BNDAB-4

Fig. S17 HRMS (ESI) spectra of BNDAB-4