Supporting information for:

Revisiting the spectroscopy of Xanthine derivatives: theobromine and theophylline

Ander Camiruaga,^a Imanol Usabiaga^{a,b}, Viola C. D'mello,^c Gustavo A. García,^d Sanjay Wategaonkar^c and José A. Fernández^{* a}

a. Dep. of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain.

b. Present address: Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, via Selmi 2, I-40126 Bologna, Italy.

c. Dep. of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.

d. Synchrotron SOLEIL, L'Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette, France

Table S1. Relative stability and spectroscopic values of theobromine and theophylline. All values
are ZPE-corrected. The ZPE from the PBE0/aug-cc-pVDZ calculation were used to correct the
values of the CCSD(T) calculation.

	Theobromine		Theoph	ylline	
	Keto	C2-Enol	C6-Enol	7H	9H
Relative Stability (kJ/mol)	0	69.3	65.4	0	36.3
0_0^0 transition (cm ⁻¹)	35319.8	-	-	35633.3	-
Adiabatic Ionization Energy (eV) Experimental values					
IP	8.120	-	-	8.170	-
ZEKE	8.133	-	-	8.184	-
TPEPICO	8.137	-	-	8.187	-
Computation level					
M06-2X/6-311++G(d,p)	8.217	8.169	8.078	8.266	8.235
M06-2X/aug-cc-pVDZ	8.120	8.074	7.975	8.165	8.147
PBE0/aug-cc-pVDZ	8.088	8.010	7.921	8.113	8.065
CCSD(T)/cc-pVTZ	7.961	7.928	7.832	8.009	7.989

Figure S1. Rotational energy barriers of the methyl groups of theobromine (THB), computed at M06-2X/6-311++G(d,p) level. The shape of the barriers is similar to those computed by Kim's group (ref 10 in the main text).

Figure S2. Rotational energy barriers of methyl groups of theophylline (THP), computed at M06-2X/6-311++G(d,p) level. The shape of the barriers is similar to those computed by Kim's group (ref 10 in the main text).

Wavenumber (cm ⁻¹)	Transition	Calculated wavenumber. (cm ⁻¹)	Vibrational mode
0	00	-	-
+ 36	1_{0}^{1}	44.3	τ_{ring} , γCH_3 (N7)
+ 86	3_{0}^{1}	82.4	γ CO6, γ CH3 (N7), τ _{ring}
+ 109	4^{1}_{0}	114.9	τ _{ring} , γ CH ₃ (N7), η CH ₃ (N7)
+ 128	5^{1}_{0}	129.6	τ _{ring} , γ CH ₃ (N7), η CH ₃ (N7)
+ 145	$4^{1}_{0}1^{1}_{0}$	-	Combination band
+ 158	$5_0^1 1_0^1$	-	Combination band.
+ 169	$4_0^1 1_0^2$	-	Combination band.
+ 179	$5_0^1 1_0^2$	-	Combination band.
+ 188	$4_0^1 1_0^3$	-	Combination band.
+ 192	6^{1}_{0}	185	τ _{ring} , γ CH ₃ (N7), η CH ₃ (N7)
+201	$5^{1}_{0}1^{3}_{0}$	-	Combination band.
+ 207	7^{1}_{0}	199.6	$ au_{ m ring}$
+ 224	8_0^1	212.2	τ _{ring} , rocking CH ₃

Table S2. Assignment of vibronic transitions in the theobromine REMPI spectrum (ν -stretching, β – bending, δ – deformation, γ – wagging, η – twisting, τ – torsion). A cartoon with the atom movement for each vibrational mode is also shown.

Table S3. Assignment of vibronic transitions of the theophylline REMPI spectrum (v-stretching, β – bending, δ – deformation, γ – wagging, η – twisting, τ – torsion). A cartoon with the atom movement for each vibrational mode is also shown

Wavenumber (cm ⁻¹)	Transition	Calculated Wavenumber (cm ⁻¹)	Vibrational mode
0	00	-	_
+ 32	$1^{\check{1}}_0$	41.2	τ _{ring} , η CH ₃ (N1 & N3)
+ 59	2_{0}^{1}	66.7	τ _{ring} , γ CH ₃ (N1 & N3)
+ 96	4_{0}^{1}	102.6	$ au_{ m ring}$
+ 140	6_0^1	140.5	$ au_{ m ring}$
+ 207	70	200.8	τ _{ring} , γ N7H, γ CH3 (N1)
+ 245	81	226.4	τ _{ring} , γ N7H, γ CH3 (N1)
+ 287	9 ¹ ₀	278.7	Ring rocking

Figure S3. PES matrix of theobromine (THB)

Figure S4. PES matrix of theophylline (THP)

Table S4. Assignment of the vibrational transitions in the photoelectron spectra of theophylline (THP) (ν – stretching, β – bending, δ – deformation, γ – wagging, η – twisting, τ – torsion). A cartoon with the atom movement for each vibrational mode is also shown.

Photon Energy (cm ⁻ ¹)	Transition	Calculated wavenumber. (cm ⁻¹)	Vibrational mode
0.0	00	-	-
209.7	8_{0}^{1}	284.1	$\tau_{ring}, \beta CH_3$
298.4	12^{1}_{0}	399.9	$\tau_{\rm ring}, \beta C=O$
443.6	14^{1}_{0}	479.1	$\delta_{ m ring}$
685.6	10^{2}_{0}	-	$\tau_{ring}, \gamma \ CH$
871.1	14_{0}^{2}	-	
911.4	26 ¹ ₀	987.0	δ_{ring} , vN ₃ C ₂ , vN ₁ CH ₃ , vN ₃ CH ₃
1290.5	34_{0}^{1}	1333.5	$\delta_{ring}, \beta CH, \beta NH$
1363.1	38_{0}^{1}	1433.5	$\delta_{ring}, \beta CH_3, \beta NH$
1524.4	44^{1}_{0}	1497.8	vC4C5, β CH3
1540.5	45^{1}_{0}	1508.7	vC_8N_9 , δ_{ring}
1645.4	47^{1}_{0}	1687.9	vN3C4, vN7C5, β NH
1798.6	49^{1}_{0}	1830.4	vC=O, β CH ₃
2129.3	$14^{1}_{0}47^{1}_{0}$	-	Combination band.
2726.2	$14_0^2 47_0^1$	-	Combination band.

Table S5. Assignment of the vibrational transitions in the photoelectron spectra of theobromine (THB) (v – stretching, β – bending, δ – deformation, γ – wagging, η – twisting, τ – torsion). A cartoon with the atom movement for each vibrational mode is also shown.

Photon Energy (cm ⁻¹)	Transition	Calculated wavenumber. (cm ⁻¹)	Vibrational mode
0.0	00	-	_
403.3	14^{1}_{0}	428.5	δ_{ring}
637.2	18^{1}_{0}	671.0	δ_{ring}
879.2	10^{2}_{0}	-	$\tau_{ring}, \gamma CH$
1080.8	26^{1}_{0}	1041.1	δ_{ring} , vN ₃ C ₂ , vN ₉ C ₄ , β CH ₃
1234.0	18_{0}^{2}	-	δ_{ring}
1484.1	37 ¹ ₀	1431.1	δ_{ring} , β NH, β CH ₃ , vC ₂ O ₁ , vC ₆ O ₂
1839.0	46^{1}_{0}	1629.0	vN ₃ C ₄ , vN ₇ C ₅ , β NH
2040.6	49^{1}_{0}	1846.7	vC2O6, β NH
2234.2	$18_0^n 37_0^1$	-	Comb.
2887.5	37 ₀ ²	-	δ_{ring} , β NH, β CH ₃ , vC ₂ O ₁ , vC ₆ O ₂

 14^{1}_{0}

 18^{1}_{0}

 37^{1}_{0}

 46^{1}_{0}

 49^{1}_{0}

Atom	X coord.	Y coord.	Z coord.
С	-1.942301	0.620915	0.00028
0	-3.131431	0.875182	0.000955
Ν	-1.462018	-0.668252	0.000036
Ν	-0.984551	1.626179	-0.000064
Н	-1.366904	2.560503	0.000162
С	0.406141	1.531248	-0.001091
0	1.119153	2.520354	-0.001029
С	1.800809	-1.769945	-0.000817
С	0.800139	0.156386	-0.000439
С	-0.108257	-0.881844	-0.000181
Ν	2.036957	-0.44639	-0.000764
Ν	0.511593	-2.08297	-0.000576
С	3.319437	0.220454	0.002216
Н	3.410221	0.862538	-0.876652
Н	3.419953	0.838258	0.897478
Н	4.102014	-0.540574	-0.012345
С	-2.415487	-1.760185	0.000303
Н	-3.051002	-1.701459	-0.886858
Н	-1.850429	-2.692048	-0.000152
Н	-3.050149	-1.701821	0.888104
Н	2.607758	-2.491837	-0.001198
Н	2.607758	-2.491837	-0.001198

Table S6. Structure of the neutral theobromine (KETO) in Cartesian coordinates (Å), computed at PBE0/aug-cc-pVDZ level.

Atom	X coord.	Y coord.	Z coord.
С	-1.919432	0.677008	-0.000019
0	-3.096373	0.894169	0.000272
Ν	-1.446873	-0.671086	-0.000011
Ν	-0.95918	1.67083	-0.000529
Н	-1.334685	2.61265	-0.000229
С	0.422364	1.551102	-0.000098
0	1.183354	2.485065	0.000215
С	1.750528	-1.807172	-0.000139
С	0.806417	0.145903	-0.000154
С	-0.141602	-0.912032	-0.000097
Ν	2.003765	-0.445838	-0.000168
Ν	0.479068	-2.116817	-0.000077
С	3.313561	0.196243	0.000315
Н	3.410782	0.823373	-0.887943
Н	3.414358	0.815112	0.894007
Н	4.073207	-0.585817	-0.004798
С	-2.447278	-1.733463	0.00019
Н	-1.922412	-2.687591	0.00069
Н	-3.07331	-1.626035	0.888837
Н	-3.073007	-1.626738	-0.888757
Н	2.564424	-2.523995	-0.000187

Table S7. Structure of the ionic theobromine (KETO) in Cartesian coordinates (Å), computed at PBE0/aug-cc-pVDZ level.

Atom	X coord.	Y coord.	Z coord.
С	1.319217	0.805488	-0.000026
0	2.321177	1.497483	0.000027
Ν	0.061464	1.368109	-0.000024
Ν	1.406723	-0.587066	-0.000017
С	0.338993	-1.494305	-0.000029
0	0.49581	-2.704854	0.000013
С	-3.007155	-0.197862	0.000001
С	-0.913975	-0.811171	-0.00002
С	-1.036877	0.556471	-0.000013
Ν	-2.204472	-1.280357	0.000018
Ν	-2.33763	0.943273	0.000008
С	-0.044019	2.813632	0.000008
Н	-1.104031	3.067097	0
Н	0.444362	3.224419	0.887185
Н	0.444385	3.224456	-0.887138
Н	-4.08612	-0.277225	0.00001
С	2.759042	-1.120089	0.000015
Н	3.295503	-0.772661	-0.886104
Н	3.295475	-0.772629	0.886138
Н	2.677779	-2.206109	0.000032
Н	-2.477209	-2.249087	0.000038

Table S8. Structure of the neutral theophylline (7H) in Cartesian coordinates (Å), computed at PBE0/aug-cc-pVDZ level.

Atom	X coord.	Y coord.	Z coord.
С	1.29286	0.832738	-0.000043
0	2.215744	1.598119	0.000023
Ν	-0.03729	1.36855	-0.000015
Ν	1.452554	-0.543796	-0.000019
С	0.432698	-1.486155	-0.000022
0	0.589371	-2.682793	0.000014
С	-2.990762	-0.310637	-0.000004
С	-0.877443	-0.85242	-0.000011
С	-1.076686	0.549011	-0.000009
Ν	-2.108196	-1.373574	0.000013
Ν	-2.39914	0.856006	0.000009
С	-0.175135	2.82111	0.000011
Н	-1.238744	3.055936	0.000016
Н	0.318907	3.220627	0.888436
Н	0.318907	3.220655	-0.888401
Н	-4.063813	-0.464021	0.000008
С	2.841831	-1.013906	0.000017
Н	3.350285	-0.640606	-0.890669
Н	3.350257	-0.640566	0.890703
Н	2.816481	-2.102344	0.000041
Н	-2.332894	-2.361036	0.000027

Table S9. Structure of the ionic theophylline (7H) in Cartesian coordinates (Å), computed at PBE0/aug-cc-pVDZ level.

Figure S5. Representation of the molecular orbitals of theobromine (THB) and theophylline (THP) involved in the $S_0 \rightarrow S_1$ electronic transition ($\pi \rightarrow \pi^*$)