Supporting Information

Redox-Mediated Transformation of a Tb₂O₃(111) Thin Film from the Cubic Fluorite to Bixbyite Structure

Christopher J. Lee¹, Ameen Sayal¹, Saumye Vashishtha¹, Jason F. Weaver¹*

¹Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA

S1. O₂ TPD data obtained after the CF to bixbyite transformation

Figure S1 compares O_2 TPD spectra obtained after 9, 10 and 19 oxidation and reductions steps, with oxidation achieved by exposing the film to ~60 ML of O-atoms at 300 K. Figure S1 also shows an O_2 TPD spectrum obtained after the 20th oxidation step performed at 300 K and using an O-atom exposure of ~120 ML. This comparison reveals that the O_2 TPD traces after steps 9, 10 and 19 differ only slightly, and that doubling the O-atom exposure at the 20th step causes only a small increase (< 0.1 ML) in the O_2 TPD yield in the α -feature. The data thus supports the conclusion that the CF to bixbyite transformation effectively reaches completion after the 10th oxidation and reduction step.

S2. Estimates of oxide-phase quantities from O2 TPD fits

We estimated the quantity of oxygen desorbing from the oxidized CF-TbO_x, δ -Tb₁₁O₂₀ and ι -Tb₇O₁₂ phases by fitting the measured O₂ TPD spectra with peaks representing decomposition from each of these phases. Our goal was to obtain reasonable estimates of the O₂ TPD yields for the individual TPD peaks rather than to quantitatively reproduce the TPD peak shapes. For this purpose, we found it convenient to fit the ι and δ TPD peaks using Lorentz functions and the CF TPD peak using a Voigt function. Figure S2a shows measured and fit TPD peaks obtained from a reference ι -phase that we prepared by extensively oxidizing the final c-Tb₂O₃ film, and then heating to 700 K to desorb oxygen from the α and δ phases. We fit the resulting TPD spectrum using a single Lorentz function and obtain excellent agreement with the measured O₂ TPD yield.

We subsequently fit the O_2 TPD spectrum obtained from the oxidized CF-TbO_x film prior to heating to 1000 K to initiate the CF to bixbyite transformation. In this case, we fit the main, broad TPD feature arising from CF-TbO_x decomposition using a Voigt function and fit the small t-peak (Figure S2b) by adjusting only the intensity of the Lorentz function for the t-peak while keeping other peak parameters (center, width, etc) fixed at the values determined for the iota reference spectrum (Figure S2a). Similarly, we optimized a Lorentz function to fit the δ -peak observed in a TPD spectrum obtained after extensively oxidizing the final c-Tb₂O₃ film, and subsequently heating to 600 K to desorb oxygen from the α feature and thereby generating a TPD spectrum exhibiting only the δ and t peaks (not shown).

After setting the individual peak parameters as described above, we fit O_2 TPD spectra for each redox step by optimizing the intensities of the CF, δ and ι peaks. Figures S2c and d compare measured O_2 TPD spectra for Steps 1 and 5 with the individual fit peaks and their sum, i.e., the total fit spectrum. We find that the fit spectra reproduce the measured O_2 TPD yields to within better than about 10%.