The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides

Jiaxiang Sun^{$\perp,1$}, Xin Zhong^{$\perp,2$}, Wenwen Cui³, Jingming Shi³, Jian Hao^{*,3}, Meiling Xu^{*,3} and Yinwei Li³

¹Department of Informationization Construction and Management, Information and Network Center,

Jiangsu Normal University, Xuzhou 221116, China

²Center for High Pressure Science and Technology Advanced Research, Changchun 130012, China

³School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China

Figure S1. Spin-polarized band structure of transition metal tri-bromides obtained with the PBE functional. The spinup bands and spin-down bands are shown in red and green, respectively.

Figure S2. Spin-polarized band structure of transition metal tri-bromides obtained with the PBE functional. The spinup bands and spin-down bands are shown in red and green, respectively. The CoBr₃ and RhBr₃ are nonmagnetic.

Figure S3. The fluctuation of potential energy (72 atoms/cell) as a function of AIMD simulation steps at 300 K calculated using PBE functional.

Figure S4. Possible configurations of V spins: (a) ferromagnet (FM), (b) Néel antiferromagnet (AFM- Néel), (c) stripy AFM, and (d) zigzag AFM.

Figure S5. Spin-polarized band structures without (a) and with SOC (b) at HSE06 level. Inset: Dirac states near the Fermi level. The black and red lines represent the spin up and spin down channels, respectively.

Figure S6. Band structures of VBr₃ calculated by GGA +U with SOC. (a) U=0.2 eV, (b) U=0.4 eV, (c) (d) U=0.6 eV, (e) U=0.8 eV, and (f) U=1.0 eV.

Figure S7. Band structures of FeBr₃ calculated by GGA +U with SOC.

Figure S8. Band structures of NiBr₃ calculated by GGA +U with SOC.

Figure S9. Band structures of PdBr₃ calculated by GGA +U with SOC.

Table S1. The relative	energies t	between t	the FM	and AFN	1 states.
------------------------	------------	-----------	--------	---------	-----------

E(eV/f.u.)	FM	AFM-Neel	AFM-zigzia	AFM-stripy
VBr ₃	0	0.221	0.123	0.075
FeBr ₃	0	-0.791	-0.804	-0.780
NiBr ₃	0	0.130	0.131	0.126
PdBr ₃	0	0.119	0.127	0.122

Table S2. Summary of magnetic anisotropy energies (MAE) in µeV/metal and the easy axis (EA) for the VBr₃, NiBr₃ and PdBr₃ monolayer.

MAE (µeV/metal)	E _[001] -E _[1-10]	E _[1-10] -	EA
		E _[110]	
VBr ₃	300	150	[110]
NiBr ₃	377	-50	[1-10]
PdBr ₃	463	196	[110]