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Computational Details

All reactant, transition state and product (R, TS, P) geometries were optimized using the 

Gaussian09 program at the B3LYP+D3/def2-TZVP/CPCM level of theory.1 Free energy 

changes, ΔG, were evaluated from equilibrium geometries using equation (S1):

ΔG = ΔEel  + ΔGsolv + Δ [EZPVE + pV - RT lnQ]                                   (S1)

where gas-phase ΔEel and Δ[EZPVE + pV - RT lnQ] terms were obtained at the same level of theory 

as the optimized structures, while ΔGsolv was calculated using the COSMO-RS approach with radii-

based isosurface cavity, ($cosmo_isorad keyword) and the COSMOtherm parameter set 

BP_TZVPD_FINE_C30_1501.ctd as available in COSMOtherm15.2 The COSMO-RS 

calculations were carried following the recommended protocol: the BP86/def2-TZVPD/COSMO(εr 

= ∞) ≡ ECOSMO,∞ and BP86/def2-TZVPD/in vacuo ≡ Ein vacuo single-point calculations are used to 

calculate Gsolv(T) = (ECOSMO,∞ - Ein vacuo) + μCOSMO-RS(T), where μ(T) is the temperature-dependent 

COSMO-RS chemical potential as defined in ref 3. Intrinsic reaction coordinate (IRC) calculations 

were performed to connect all TS with the corresponding R and P structures.

All activation free energies, ΔG≠ were taken as the difference between the free energy of the 

TS in the S = 2 state (GTS) and GSub + GR + 1.9 kcal mol-1, where GSub is the free energy of a 

singlet substrate and GR is the free energy of a ferryl complex in its ground spin state (S = 1 or 

S = 2). A value of 1.9Δn kcal mol-1 has been applied to correct the computed values to the 1 

mol L-1 standard state (a value of 1.9 kcal mol-1 corresponds to the conversion of a 1 bar standard 

state in the gas phase to 1 mol L-1 concentration in solution at 298K; Δn is the change in the 

number of moles).4 

All reaction free energies ΔG0, were considered as the difference between the free energy of 

the isolated reactants and products, ΔG0 = (GRad + GP) - (GSub + GR), where GRad is the free 

energy of a doublet product radical and GP is the free energy of a ferric hydroxide complex in 

its ground spin state (S = 5/2).
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Figure S1. Reactive mode composition of the LFeO fragment across the set of reactions. As 
observed, most of the motion in this fragment is located on the oxygen atom.
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Figure S2. Evolution of KEDRM,j with Marcus reorganization energy 
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Figure S3. Evolution of KEDRM,j with the pKa of the FeIVO complex.
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Figure S4. Evolution of KEDRM,j with the pKa of the FeIIIO complex.
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Figure S5. Evolution of KEDRM,j with the reduction potential E° of the FeIVO complex.
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Figure S6. Evolution of KEDRM,j with the reduction potential E° of the FeIVOH complex.
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Appendix S1: RMCF analysis of [FeIVO(TQA)(Cl-)]+ derivatives

To test the general applicability of the RMCF analysis, we pursued the CPET reactivity of a 

second series of oxidants with cyclohexane as substrate, based on the [FeIVO(TQA)(Cl-)]+ 

scaffold5 and a set of derivatives (Scheme S1). This complex is activates the strong C-H bond 

in cyclohexane despite having a low driving force for CPET, thus being an interesting subject 

for our RMCF analysis. 

Scheme S1. [FeIVO(TQA)(Cl-)]+ scaffold and derivatives studied using the RMCF 

methodology on their CPET reactivity with cyclohexane as a substrate.

R1 R2 R3

1 H H H
2 CN H H
3 H CN H
4 CN CN H
5 NO2 H H
6 H NO2 H
7 OMe H H
8 NMe2 H H
9 H NMe2 H
10 NMe2 H NMe2

The results show that this reactivity is assisted by a large asynchronicity in favour of electron 

transfer which is reflected in the reactive mode composition factor (Figure S7A) and the Gibbs 

energy of activation (Figure S7B), which smoothly evolves along the corresponding set of 

reactions. These additional results allowed us to further illustrate how KED evolves as a 

function of asynchronicity and how this translates into differential atomic motion at the CPET 

transition state which reflects on the magnitude of ΔG≠.
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Figure S7. A) Evolution of KEDH in the series of CPET reactions between [FeIVO(TQA)(Cl-

)]+ -derived oxidants (numbered red circles) and cyclohexane, as a function the asynchronicity 

factor η, and B) changes in ΔG≠ associated with the redistribution of KEDH at the reactive mode. 

The TMC series, discussed in the main text, is included in both plots for comparison as blue 

unlabelled circles.
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Appendix S2: Calculation of tunneling corrections

The tunneling correction to the free energy activation barrier at each temperature was calculated 

according to the Eckart method, using our home-built program KAPPA. Calculation of a 

transmission coefficient  with  was implemented in analogy to the TheRate 𝜅 = 𝜅(𝛽) 𝛽 = 1/(𝑘𝐵𝑇)

program; i.e., Eq. (12) in ref. 6:

, (S10)

𝜅(𝛽) =

+ ∞

∫
0

𝑃(𝐸)𝑒 ‒ 𝛽𝐸𝑑𝐸

+ ∞

∫
𝐸 ∗ (𝑇)

𝑒 ‒ 𝛽𝐸𝑑𝐸

where

𝑃(𝐸) = { 0,                                   𝐸 ∈ (0,𝐸1)                                          
𝑝(𝐸),                            𝐸 ∈ [𝐸1,𝐸 ∗ )                                         

1 ‒ 𝑝(2𝐸 ∗ ‒ 𝐸),        𝐸 ∈ [𝐸 ∗ ,2𝐸 ∗ ‒ 𝐸0)                             
1,                                   𝐸 ∈ [2𝐸 ∗ ‒ 𝐸1, + ∞)                          

�
where (S11)

, (S12)
𝑝(𝐸) =

1
1 + 𝑒𝑥𝑝(2𝜃(𝐸))

where

, (S13)

𝜃(𝐸) =
2𝜋
ℎ

2𝜇𝑒𝑓𝑓

𝑆𝑟

∫
𝑆𝑙

𝑉𝑑(𝑠) ‒ 𝐸 𝑑𝑠

where

, (S14)
𝑉𝑑(𝑦) =

𝑎𝑦
1 + 𝑦

+
𝑏𝑦

(1 + 𝑦)2
+ 𝑐

where
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, (S15)𝑦 = 𝑦(𝑠) = 𝑦
𝛼(𝑠 ‒ 𝑠0)

where

 and  together with  and  satisfy:𝑠𝑙 𝑠𝑟 𝑦𝑙 = 𝑦(𝑠𝑙) 𝑦𝑟 = 𝑦(𝑠𝑟)

 (S16)𝑉𝑑(𝑦𝑙) = 𝑉𝑑(𝑦𝑟) = 𝐸

Eq. (S16) is a quadratic equation that can be written in the form:

, (S17)𝐴𝑦2 + 𝐵𝑦 + 𝐶 = 0

where

, (S18)𝐴 = 𝐸 ‒ 𝑐 ‒ 𝑎

, (S19)𝐵 = 2(𝐸 ‒ 𝑐) ‒ 𝑏 ‒ 𝑎

, (S20)𝐶 = 𝐸 ‒ 𝑐

where A > 0 is assumed.

If , then Eq. (S17) has two real roots:𝐷 = 𝐵2 ‒ 4𝐴𝐶 > 0

, (S21)
𝑦𝑙(𝐸) =

‒ 𝐵 ‒ 𝐷
2𝐴

, (S22)
𝑦𝑟(𝐸) =

‒ 𝐵 + 𝐷
2𝐴

such that  < . For the case D = 0, Eq. (S17) has a single root for which  is maximal. 𝑦𝑙 𝑦𝑟 𝑉𝑑

This root is denoted by  and from D = 0, we can express the root as:𝐸 ∗

. (S23)
𝐸 ∗ = 𝑐 +

1
𝑏(𝑎 + 𝑏

2 )2
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By virtue of Eq. (S15), the integral in Eq. (S13) can be transformed into the integration 

variable y as:

. (S24)

𝜃(𝐸) =
2𝜋
ℎ

2𝜇𝑒𝑓𝑓

𝑦𝑟

∫
𝑦𝑙

1
𝛼𝑦

𝑎𝑦
1 + 𝑦

+
𝑏𝑦

(1 + 𝑦)2
+ 𝑐 ‒ 𝐸𝑑𝑦

In both integrals in Eqs. (S13) and (S24), we assume .𝐸 ‒ 𝑐 ≥ 0

The integral in Eq. (S24) can be evaluated analytically as:

. (S25)
𝜃(𝐸) =

2𝜋2

𝛼ℎ
2𝜇𝑒𝑓𝑓[ 𝑏 ‒ 𝐸 ‒ 𝑐 ‒ 𝐸 ‒ 𝑎 ‒ 𝑐]

Finally, the definition of P in Eq. (S11) allows to rewrite the integral in Eq. (S10) in a 

compact form as:

. (S26)

𝜅(𝛽) = 1 + 2𝛽

𝐸 ∗

∫
𝐸1

𝑃(𝐸)𝑠𝑖𝑛ℎ[𝛽(𝐸 ∗ ‒ 𝐸)]𝑑𝐸

The evaluation of an integral in Eq. (S26) requires input of the following parameters:

i) T, temperature,

ii) , reduced mass of the transition mode,𝜇𝑒𝑓𝑓

iii) , range coefficient; , 𝛼
𝛼 = ‒

𝜇𝑒𝑓𝑓(𝜔 ≠ )2𝐵

2𝑉 ≠ (𝑉 ≠ ‒ 𝐴)

where 

 is the classical barrier height, 𝑉 ≠

is the imaginary frequency, 𝜔 ≠

A is the classical potential energy of reaction (from RC to PC), and 

.𝐵 = (2𝑉 ≠ ‒ 𝐴) + 2 𝑉 ≠ (𝑉 ≠ ‒ 𝐴)

iv) , zero-point corrected energy of reaction (from RC to PC)𝑎
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v) , zero-point corrected B; , where  is the zero-𝑏 𝑏 = (2𝑉 ≠ 𝐺 ‒ 𝑎) + 2 𝑉 ≠ 𝐺(𝑉 ≠ 𝐺 ‒ 𝑎) 𝑉 ≠ 𝐺

point energy corrected barrier height

vi) , sum of the zero-point energies of the two reactants (set to zero)𝑐
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Appendix S3: Defining TS symmetry based on KED

In the main text, the TS (a)symmetry, pointed out by Westheimer during his analysis of kinetic 

isotope effects on H-transfer reactions,7 is reinterpreted by measuring the TS location based 

solely on KEDH. An alternative and straightforward measure of (a)symmetry would be the 

difference in KED between the fragments flanking the transferred H-atom, namely the nascent 

radical and the iron-oxo unit plus its ligands: KEDLFeO - KEDSubs. One can easily reckon that as 

the difference approaches zero, the symmetry would be maximal. The highest asymmetry 

should then correspond to scenarios where it tends towards either 1 or -1.

This formulation provides an intuitive picture of the redistribution of kinetic energy at the 

reactive mode and its influence on KIE. It is illustrative to look at the evolution of KIE with 

KED asymmetry as defined in the previous paragraph within the set of 18 reactions studied in 

this work, before and after applying Eckart tunneling corrections:

     

The evolution of the uncorrected KIE with KED asymmetry is remarkably linear. When 

tunneling corrections are included the trend preserves, albeit scattered. It is also noticeable that 

an outlier exists, with CO as axial ligand. We apply the RMCF analysis to understand this in 

Appendix S3.

We foresee a possible pitfall to this alternative description of the TS based on KED asymmetry. 

When comparing transition states, one can imagine two structures with different KEDH but 

nearly identical KED asymmetry, as exemplified in the following hypothetical reactions:

Without tunneling

With tunneling



S13

Reaction 1: A---H---B (KEDH = 0.70, KEDA = 0.12, KEDB = 0.18)

Reaction 2: Y---H---Z (KEDH = 0.50, KEDY = 0.19, KEDZ = 0.31)

In both cases, KED asymmetry is 0.12, which would misleadingly suggest reactive modes 

(hence, transition states) with the same character. In contrast, KEDH points towards an earlier 

TS for reaction 2, with presumably lower KIE and tunneling contributions than reaction 1.
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Appendix S4: Using RMCF to analyze the character of the reactive mode

The reactive mode (or any real mode) can be readily compared with the full set of modes at TS 

by calculating the KED deviation between them. To measure the deviation of KED we compute 

the root mean square deviation between mode α and the reactive mode, RM:

(S27)
𝑅𝑀𝑆𝐷𝛼,𝑅𝑀 =

1
𝑛∑

𝑗
(𝐾𝐸𝐷𝑗,𝛼 ‒ 𝐾𝐸𝐷𝑗,𝑅𝑀)2

Since KED is a scalar quantity, no information related to directionality of motion is included in 

the analysis. Despite this apparent shortcoming, it proves insightful as illustrated with the 

analysis of the outlier in the plot where the axial ligand is CO (reproduced from Appendix S2, 

outlier shown as a red cross):

The histogram condensing the RMSD between the reactive mode and the full set of real modes 

for this system is the following:
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Some general features are (a) a relatively high RMSD values for the set of high-frequency C-H 

stretching modes (from ca. 2900 cm-1 onwards) and (b) a nearly constant RMSD value for the 

rest of the modes. We highlight the zones where the largest resemblance (low-RMSD) to the 

reactive mode appears. Inspection of these modes reveals that the CO-ligated complex, the earliest 

and most redox-driven within the set of reactions, exhibits a TS resembling rocking and wagging 

of the reactive CH2 group (blue highlight) in the substrate but no noticeable C-H stretching. Thus, 

H-motion is not only low (KEDH = 0.19), but the character of the reactive mode is substantially 

different to the rest of the set. The reactive mode also involves ample FeO motion (blue-shaded 

region), as expected from the high KEDLFeO = 0.50. The RMCF analysis facilitates this 

rationalization and points out another pitfall of using KED asymmetry to predict relative kinetic 

isotope effects within sets of reactions: subtle mechanistic features can dramatically affect KED 

asymmetry whereas KEDH proved robust throughout the study.  

Looking at some other reactive systems under the same lens clarifies the previous analysis:
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From H2O-ligation onwards, C-H stretching motion (identified by low-RMSD modes in the 

medium-frequency range) plays an increasingly important role in the chemical step and, thus, 

the rest of the set behaves monotonically.
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