Ti_2O_3/TiO_2 heterophase junction with enhanced charge

separation and spatially separated active sites for photocatalytic

CO₂ reduction

Min Xu^a, Amir Zada^c, Rui Yan^b, Haonan Li^b, Ning Sun^b and Yang Qu^{b*}

^aCollege of Science & Technology Ningbo University, Ningbo 315211, PR China.

^bKey Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.

^cDepartment of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.

Figure S2 Raman curve of Ti_2O_3 (T) and Ti_2O_3/TiO_2 nanocomposites.

Figure S3 HRTEM image of T550.

Figure S4 TEM of T700.

Figure S5 Wide XPS of Ti_2O_3 (T) and Ti_2O_3/TiO_2 nanocomposites.

Figure S6 Band gap and partial density of states of Ti_2O_3 . The calculations were performed within the framework of density functional theory (DFT) framework embedded in the CASTEP code. The exchange-correlation energy is treated with generalized gradient approximation (GGA), using spin-polarized Perdew-Burke-Ernzerhof (PBE) functional.

Figure S7 Mass spectra analyses of the carbon source of the evolved CH_4 and CO in the photocatalytic reduction of ${}^{13}CO_2$.

Figure S8 Amount of products versus irradiation time of T550 for photocatalytic CO_2 reduction and H_2 production.

Figure S9 CO₂-TPD of T and T550.