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S1 The Hubbard bond model
We detail in this section the results of the 2-state (or 2-site) Hub-
bard model that we used to describe bonding between two chem-
ical species. We start from the general Hamiltonian in the second
quantized form

H = Â
i,s

eia
†

i,s ai,s � t Â
s

a†

b,s aa,s+

� t Â
s

a†

a,s ab,s +Â
i

Uini,"ni,#

where s runs over the spins (s =",#), i runs over the two lattice
sites (i= a,b) and ai,s (a†

i,s ) destroys (creates) an electron in state
(orbital) i with spin s , ei are the on-site energies and t is the hop-
ping energy. We first consider the model for orthogonal orbitals
and later address the problem of overlapping states. The problem
is readily re-formulated in first quantization language where, for
two electrons, H reads as

H = h
1

+h
2

+V

with hl the monoelectronic operator for the lth electron and V the
Coulomb repulsion. The equivalence between the two is obtained
upon setting

ha|h|ai ⇡ ea hb|h|bi ⇡ eb

ha|h|bi= hb|h|ai=�t

haa|V |aai=Ua hbb|V |bbi=Ub

and neglecting the remaining e� e matrix elements. Here, |ai =
a†

a," |0i (the choice of the spin is immaterial in the equations

above) and |aai = a†

a,"a†

a,# |0i and similarly for |bi and |bbi, |0i
being the vacuum state. In such language the 2-electron wave-
function Y can be factorized into the product of a spatial (F) and
a spin wavefunction (Q), and the first becomes a combination of
the following configurations (for the singlet ground-state)

F
0

=
1p
2

(fa(r
1

)fb(r2

)+fb(r1

)fa(r
2

))

Fa = fa(r
1

)fa(r
2

) Fb = fb(r1

)fb(r2

)

i.e., a covalent configuration (F
0

) and two ionic ones (Fa,Fb). It
readily follows

H |F
0

i |Fai |Fbi
hF

0

| ea + eb �
p

2t �
p

2t
hFa| �

p
2t 2ea +Ua 0

hFb| �
p

2t 0 2eb +Ub

Symmetry (i.e., whenever a $ b under a symmetry operation of
the Hamiltonian) makes the problem analytically solvable. Under
such circumstances, indeed, only the even (or g) combination of
ionic configurations,

Fg =
1p
2

(Fa +Fb)

can interact with F
0

and the problem can be reformulated in this
basis as

H |F
0

i |Fgi
hF

0

| 0 �2t
hFg| �2t U

where we have set ea = eb = 0 and Ua =Ub =U . The ground-state
energy then follows as

e =
U
2

�
r

U2

4

+4t2

and the ground-state wavefunction as

F = F
0

+

 r
1+

U2

16t2

� U
4t

!
Fg

Upon defining the transmission factor

x =

r
1+

U2

16t2

� U
4t

one re-writes the ground-state energy and wavefunction as

e =�2tx F = F
0

+
xp
2

(Fa +Fb)
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where Eel
b = �e = 2tx is the electronic contribution to the bind-

ing energy [the repulsion energy between the ion cores can be
subtracted at this point, if needed, to obtain the true binding en-
ergy]. When U ⌧ t one finds that x ! 1 and

e ⇡�2t F ⇡ 1p
2

(fa(r
1

)+fb(r1

))(fa(r
2

)+fb(r2

))

This is the molecular orbital limit where the two electrons are
paired in a molecular orbital and the bond energy attains its
maximum value 2t (the factor of two is the number of elec-
trons). On the other hand, when U � t x ! 0 and the wave-
function takes a purely covalent form F ⇡ F

0

with a vanishing
small binding energy ⇠ 4t2/U . This is the Heitler-London (aka

Heisenberg) limit, where the electrons reside on their nuclei in
an entangled state. Here, the transmission factor x measures, in
a sense, the “radical” character of the bond. To turn it into a “rad-
ical index” one can observe that x

2/(1+ x

2) is the weight of the
ionic configurations (Fg), and thus a reasonable index could be
R

x

= 1�2x

2/(1+x

2)⌘ (1�x

2)/(1+x

2), where the factor of two
guarantees that R

x

= 0 holds in the MO limit.
In general, the whole wavefunction, Y, can also be written in

terms of (normalized) Slater determinants upon noticing that

Ya¯b �Yāb ⌘
p

2F
0

(r
1

,r
2

)Q2

0,0(s1

,s
2

)

where |Ya¯bi ⌘ a†

a,"a†

b,# |0i, |Yābi ⌘ a†

a,#a†

b," |0i and QN
SM is a normal-

ized N-electron spin function with total spin S and projection M.
Hence, one can also write

Y = Ya¯b �Yāb +x

�
Yaā +Fb¯b

�

Alternatively, one can also use polarized, non-orthogonal orbitals

ya(r) = fa(r)+hfb(r)

yb(r) = fb(r)+hfa(r)

and write the exact ground-state wavefunction for this problem
in a purely covalent form

Y µ (ya(r
1

)yb(r2

)+yb(r1

)ya(r
2

))Q2

0,0

provided the polarization factor h is set to (1�
p

1�x

2)/x . The
latter is such that h ! 1 (0) in the molecular orbital (Heitler-
London) limit, and captures the role of ionic configurations. Thus,
such simple result shows that some care is needed in general
when assessing the role of ionic structures.

The case of non-orthogonal states can be handled similarly.
First, we define S = ha|bi= hb|ai,

F
0

=
1p

2(1+S2)
(fa(r

1

)fb(r2

)+fb(r1

)fa(r
2

))

and Fa,Fb as above. The Hamiltonian matrix in the basis
{F

0

,F
1

,F
2

} then gets modified into

H |F
0

i |Fai |Fbi

hF
0

| ea+eb�2tS
1+S2

q
2

1+S2

(eaS� t)
q

2

1+S2

(ebS� t)

hFa|
q

2

1+S2

(eaS� t) 2ea +Ua �2tS

hFb|
q

2

1+S2

(ebS� t) �2tS 2eb +Ub

while the overlap matrix reads as

1 |F
0

i |Fai |Fbi

hF
0

| 1

q
2

1+S2

S
q

2

1+S2

S

hFa|
q

2

1+S2

S 1 S2

hFb|
q

2

1+S2

S S2

1

Note that, differently from the previous orthogonal case, the hop-
ping energies here depend on the reference energy of the one-
electron Hamiltonian h, that is usually set to be the asymptotic
limit of the one-electron potential. Specifically, if we set ¯h = h�e

0

we need the replacements

ea ! ¯

ea = ea � e

0

eb ! ¯

eb = eb � e

0

t ! ¯t =�ha|h� e

0

|bi= t + e

0

S

in order to recover the correct result E ! ¯E = E �Ne

0

, where N =

2 is the number of electrons [In matrix notation, this follows of
course from ¯H=H�2e

0

S and the nature of the secular problem,
which requires SE �H to be singular].

As before, we focus on the symmetric case, set ea = eb = 0 and
Ua =Ub =U and introduce

Fg =
1p

2(1+S2)
(Fa +Fb)

This leads to
H |F

0

i |Fgi
hF

0

| � 2

¯tS
1+S2

� 2

¯t
1+S2

hFg| � 2

¯t
1+S2

U�2

¯tS
1+S2

and
1 |F

0

i |Fgi
hF

0

| 1

2S
1+S2

hFg| 2S
1+S2

1

and finally to the ground-state solution of the secular problem in
the form

e =
4

¯t(1�S2)S+U(1+S2)

2(1�S2)2

+

�

s
4

¯t(1�S2)S+U(1+S2)

2(1�S2)2

�
2

+
4

¯t2 +2

¯tS(U �2

¯tS)
(1�S2)2

(1)

In this expression ¯t is understood to be the hopping energy
computed with the one-electron operator referenced to ea, i.e.,

¯t = t + eaS where t and ea are matrix elements of the original,
not-shifted Hamiltonian.

Eq. 1 generalizes the one obtained above under the (stringent)
constraint of vanishing overlap orbital which, though, remains
very useful for interpretative purposes. For instance, by analogy,
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Fig. F1 Schematics of the C
2h configuration considered for describing

binding in a Y
2

X=XY
2

molecule, illustrating the spl used for the p bond,
together with the angle b that they make with the XX axis. The central
atoms X use further spt and spµ hybrids for the XY and XX s bonds.

one can now define an effective transmission factor as

xeff =�e/2|¯t|

and obtain an effective U/t ratio as

(U/t)eff =
2

�
1�x

2

�

x

The latter can also be expressed in terms of effective radical char-
acter, Reff = (1�x

2

eff)/(1+x

2

eff), as

(U/t)eff =
4Reffq
1�R2

eff

S2 The s +p Hubbard double bond
We apply the above Hubbard model separately to the s - and p-
like bonds of a (possibly distorted) Y

2

X=XY
2

molecule, focusing
on symmetric C

2h configurations (the case of a triple bond YX⌘XY
can be handled similarly provided an out-of-plane p bond is fac-
tored out at the outset). To this end we assume that the two
X atoms make a non-bent s -bond using spµ hybrids, while they
form the p-like bond with the help of spl hybrids, leaving two
further hybrids spt available for the XY bonds (equivalent to each
other in C

2h symmetry, see Fig. F1). We shall discuss later the re-
lationship between the hybridization indexes µ,l and the molec-
ular geometry.

The spµ and spl hybrids determine the overlap matrix ele-
ments, and the effective hopping and Coulomb on-site energies
to be used in the Hubbard-bond model, namely Se f f

s

, te f f
s

,Ue f f
s

for the s bond and Se f f
p

, te f f
p

,Ue f f
p

for the p one. They also de-
termine the on-site energies (i.e. the expectation values of the
one-electron Hamiltonian operator), but these are mostly irrel-

evant in the present model since in a total energy comparison,
together with the spt contributions, they just give a constant (ge-
ometry independent) energy term - the energy of the atomic sp3

configuration - that can be safely neglected.
We start by addressing the problem of the one-electron matrix

elements involved in the s bond. The two orbitals involved in the
bond are spµ hybrids of the form

|fai=
1p

1+µ

(|si+p
µ |pi)

|f 0
ai=

1p
1+µ

�
|s0i+p

µ |p0i
�

where unprimed (primed) orbitals are centered on the first (sec-
ond) atom, and |pi , |p0i are directional p orbitals oriented from
their center to the other atom. The main quantities of interest
here are the effective overlap and the hopping energy

Se f f
s

= hfa|fbi , te f f
s

=�hfa|h|fbi

the Coulomb energy will be addressed below. Expanding these
matrix elements in terms of atomic orbital contributions we get

Se f f
s

=
1

1+µ

{S
s

(ss)�2

p
µS

s

(sp)�µS
s

(pp)}

te f f
s

=
1

1+µ

{t
s

(ss)�2

p
µt

s

(sp)�µt
s

(pp)}

with the following common definitions for AO matrix elements

S
s

(ss) = hs|s0i , S
s

(sp) = hs|p0X i

S
s

(pp) = hpX |p0X i t
s

(ss) =�hs|h|s0i

t
s

(sp) =�hs|h|p0X i , t
s

(pp) =�hpX |h|p0X i

where X denotes the XX bond axis. Notice that, accord-
ing to the AO orientation, it holds t

s

(ss),S
s

(ss) � 0 while
t
s

(sp),S
s

(sp), t
s

(pp),S
s

(pp) 0.
Next, we turn attention to the p-bond, for which the relevant

spl hybrids use |pi and |p0i orbitals at an angle b with the XX axis,
see Fig. F1. If Z is the axis along the symmetry plane, orthogonal
to the bond axis, we have

|pi= cosb |pX i+ sinb |pZi

|p0i=�cosb |p0X i� sinb |p0Zi

and, thus, with the usual definitions Se f f
p

= hfa|fbi , te f f
p

=

�hfa|h|fbi, it follows

Se f f
p

= 1

1+l

n
S

s

(ss)�2

p
l cosbS

s

(sp)+

�l

�
cos

2

bS
s

(pp)+ sin

2

bS
p

(pp)
� 

te f f
p

= 1

1+l

n
t
s

(ss)�2

p
l cosb t

s

(sp)+

�l

�
cos

2

b t
s

(pp)+ sin

2

b t
p

(pp)
� 

Here, according to the AO orientations, it holds S
s

(ss), S
p

(pp),
t
s

(ss), t
p

(pp) � 0 and S
s

(sp), S
s

(pp), t
s

(sp), t
s

(pp)  0. Notice
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further that in the limit of planar configurations (b ! p/2), for
distortions that preserve C

2h symmetry, we have l ! •, Se f f
p

!
�S

p

(pp) and te f f
p

! �t
p

(pp), consistently with the direction of
the p-like orbitals.

Finally, we consider the bare Coulomb energy

U0

n

= hy
n

y

n

|V |y
n

y

n

i

for a generic spn hybrid (n = µ,l for Ue f f
s

and Ue f f
p

respectively).
Expanding U

n

in terms of AO contributions and keeping only the
classical terms we obtain

U0

n

⇡ 1

(1+n)2

Uss +
2n

(1+n)2

Usp +
n

2

(1+n)2

Upp

This latter expression, as well as the above ones for te f f
s

,Se f f
s

, etc.,
can also be conveniently written in terms of s�weights in the spn

hybrids, w
n

= 1/(1+n), i.e., in the form

Ue f f ,0
s

⇡ w2

µ

Uss +2w
µ

(1�w
µ

)Usp +(1�w
µ

)2Upp

Ue f f ,0
p

⇡ w2

l

Uss +2w
l

(1�w
l

)Usp +(1�w
l

)2Upp

These are bare quantities that only apply to unscreened orbitals;
more appropriate quantities are the screened ones, that account
for the effect of the remaining electrons on the ones singled out
for describing the bond. We generally write

Ue f f
s

=Ue f f ,0
s

/e

s

Ue f f
p

=Ue f f ,0
p

/e

p

where ek (k = s ,p) are effective dielectric constants for the s

and p electrons, as given e.g. in the constrained random-phase-
approximation1. For the p electrons, for instance, one has

U
p

= (1�U0Pr)
�1U0

where Pr = P�P
p

, P is the total (typically frequency-dependent)
polarization, P

p

is the polarization of the p electrons, U0 is the
bare Coulomb interaction and U

p

is the screened one appropriate
for p electrons. Upon taking matrix elements between p orbitals
one then finds the appropriate expression for e

p

.
These screening constants are generally geometry-dependent,

in a way that only actual calculations can reveal. However, for
the sake of modeling, we write e = eqecl where ecl is the classical
permittivity of a mixture of s and p “media”,

ecl = w
n

es +(1�w
n

)ep

es, ep being the permittivities appropriate for s and p orbitals and
w

n

the s�weight in the hybrid considered. Such orbital contri-
butions can be obtained from different sources. For instance,
calculations on p-conjugated systems give the p contributions,
which can be combined with information on spn hybrids on sim-
ple molecular systems to obtain the s ones. We use the triplet-
singlet vertical separation energy in XH

2

since, consistently with
a Hubbard-like description of bonding, it is given by (see Sec. S5)

ET S = w
n

D�Un

where D is the s� p separation energy, Un is the effective Coulomb
energy in the n�like hybrid of the singlet and w

n

the weight of the
s component in such hybrid. As for the “cooperative” contribution
eq, we do not expect much for the s bonds (eq ⇡ 1, irrespective
of pyramidalization), while for the p bonds we expect on phys-
ical grounds that eq increases somewhat when molecular pyra-
midalization occurs, since screening is at minimum in the planar
configuration (2D-like system).

To close this section we remember that, in our model, the above
(geometry-dependent) effective parameters enter in the energy
expression for the s and the p bond energies, e.g., in the limit of
vanishing orbital overlaps, it holds

e

s

=�2|te f f
s

|x
s

x

s

=

vuuuut1+

⇣
Ue f f

s

⌘
2

16

⇣
te f f
s

⌘
2

� Ue f f
s

4|te f f
s

|

and

e

p

=�2|te f f
p

|x
p

x

p

=

vuuuut1+

⇣
Ue f f

p

⌘
2

16

⇣
te f f
p

⌘
2

� Ue f f
p

4|te f f
p

|

[In the non-orthogonal case one would use Eq. 1 with ¯te f f
p

=

te f f
p

+ e

l

Se f f
p

for the p bond and ¯te f f
s

= te f f
s

+ e

µ

Se f f
s

for the s

one]. These equations give a simple expression for the energy of
the s +p bond

E = e

s

+ e

p

+ v(R)

(where v(R) is a short-range potential that accounts for the repul-
sion between the X ion cores) and thus the bond energy can be
written as

E
s+p

= E
s

+E
p

� v(R)

where E
n

= �e

n

(n = s ,p). By construction, this bond energy is
referenced to the triplet state of the fragments and is the binding
(or “cohesive”) energy of the system (EBE ) w.r.t. the fragment
separation only when XY

2

has a triplet ground-state. When it is
not the case, E

s+p

must be corrected for the promotion energy
needed to excite the fragments into their triplet state

EBE = E
s+p

�SET S

where ET S = ET � ES is the triplet-singlet separation energy of
each fragment, and S stands for their sum (SET S ⌘ 2ET S in the
symmetric case considered here). It is obvious that no s +p bond-
ing scheme can be conceived when E

s+p

< SET S.
Finally, notice that in order to define separate s� and p� bond

energies it is necessary that the core potential is attributed to one
of the two bonds, or split among them. Since the p bond can be
broken while keeping the s intact, one reasonably defines E

p

as
the “p bond energy” and E

s

� v(R) as the “s bond energy”.

S3 Fractional hybridization
Determining the nature of the hybrid orbitals involved in a p

bonded X=X system becomes a straightforward geometrical exer-
cise if one assumes that the X atoms form non-bent s bonds with
the substituents using some kind of spn hybrids. Indeed, from the
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Fig. F2 Schematics of a Y
2

X=XY
2

molecule in C
2h symmetry illustrating

the main structural parameters.

orthogonality constraint between (unnormalized) hybrids

|y
n

i= |si+
p

n |pi

it follows
hy

n

|y
n

0 i= 1+
p

nn

0
cosq

nn

0

where q

nn

0 is the corresponding bond angle (Coulson’s direction-
ality theorem). For the problem at hand of a Y

2

X=XY
2

molecule
in C

2h symmetry we take the hybrids to be spt for the XY bonds
and spµ for the XX s bond. The hybridization indexes t,µ then
follow as

t =� 1

cosa

and p
µ =� 1p

t cosa

0

or, equivalently,

µ =� cosa

cos

2

a

0

where a and a

0 are the YXY and YXX angles, respectively (see
Fig. F2). More generally, for three s bonds directed along ˆn

1

, ˆn
2

and ˆn
3

, the corresponding indexes ti follow as

ti =�
ˆn j ˆnk�

ˆni ˆn j
�
( ˆni ˆnk)

where i, j,k = 1,2,3 (i 6= j 6= k). [Note that this is a rather unique
situation where the number of hybridization indexes matches that
of independent angles. For instance, for the two t, µ hybridiza-
tion indexes needed to describe the YX and XX s bonds in YX⌘XY
the bond angle \YXX is the only geometrical parameter available.
On the other hand, for the four indexes needed in XY

4

(at an ar-
bitrary configuration) the six independent bond angles are too
many for the four indexes, and the non-bent bond assumption
must be lifted].

Having defined three hybrids (out of four basis functions) the
fourth one, say spl

- that is also the one involved in the p-bond -
follows easily by either analytical or geometrical considerations.
Let ˆn be the unit axis along such hybrid, gi = ˆn ˆni =�1/

p
lti and

A the symmetric matrix of elements Ai j = ˆnin̂ j. If ˆni are not co-
planar, ˆn can be expanded as ˆn = Âi ci ˆni and easily seen to give
Ac = g (where c and g are column vectors with components ci

and gi, respectively) and ˆn ˆn = 1 = ctAc, i.e., 1 = gtA�1g. On the
other hand, upon defining t the vector of components ti =�1/

p
ti

it also holds
p

lg= t. Hence, under such circumstances, it follows
at once

l = ttA�1t

while arccos(�1/
p

lti) (i = 1�3) give the directional angles that
the hybrid makes with the s bonds. When the latter are co-planar
A is singular, l is infinite and the directional angles are p/2, as
expected.

Alternatively, the hybridization index l can be obtained by the
conservation of the s (or p) weights upon hybridization, namely
from

1 = TrP ⌘ Â
i

w
ti +w

l

where w
n

= 1/(1+n) is the s�weight in the spn hybrid, P = |sihs|
is the projector on the s�shell and, in the rightmost equivalence,
the trace over the sp manifold has been evaluated on the set of
(normalized) hybrids. In other words, it holds

l =
1

1�Âi(1+ ti)�1

�1

which is explicitly singular for co-planar s bonds. In the specific
case we are interested in, a convenient measure of the “distortion”
of the p-axis is given by the angle that the hybrid makes with the
XX bond, namely

b = arccos

 
cosa

0
r

� 1

l cosa

!

Such “orbital” axis needs to be distinguished from the geomet-
rical pyramid axis ˆk, defined by the condition ˆkn̂

1

= ˆkn̂
2

= ˆkn̂
3

⌘
cosg, where g can be considered as the “pyramid angle”. They
both measure the deviation from a planar arrangement, but with
different aims. The first relies on the hybrization of the central
atom, the second is based exclusively on the molecular structure.
For the latter, simple geometrical arguments give

cosg =
1

Âi j(A�1)i j

where A is the previously defined matrix of direction cosines.
Most often, though, one uses a different (geometrical) measure

of pyramidalization, namely the angle q that the XX bond makes
with the plane of YXY0 bonds, the so-called pyramidalization an-
gle (Fig. F2). For a generic configuration one readily finds,

cosq =

s

cos

2

a

3

+
(cosa

3

cosa

1

� cosa

2

)2

sin

2

a

1

where a

1

,a
2

,a
3

are, respectively, the YXY0, Y0XX and XXY angles.
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For the symmetric C
2h cases (a

2

= a

3

⌘ a

0, a

1

⌘ a) one obtains

cosq =� cosa

0

cos

�
a

2

�

S4 Trans-bending: model results
It is possible to analyze to some extent the behaviour of the s +p

bond strength upon trans-bending. To this end we focus on a pla-
nar, D

2h configuration and bend the molecule (decrease the angle
a

0) while keeping the angle a frozen at the value it takes in the
planar configuration (see Fig. F2). This guarantees that the spt

orbitals used for the XY s bonds remain unchanged upon bend-
ing and, thus, that the energy variations refer only to the s +p

bond system. We first consider the effective p hopping energy te f f
p

(similar results follow for the effective overlap, Se f f
p

) and rewrite
it in the form

te f f
p

=
1

1+l

{t
s

(ss)+

� 2

p
µ

t
s

(sp)�l t
p

(pp)+
1

µ

[t
p

(pp)� t
s

(pp)]
�

where l cos

2

b ⌘ µ

�1 has been used to replace the directional
angle b with the hybridization index µ of the XX bond. Next,
we introduce dh = l

�1 to discuss the behaviour of this matrix
element for quasi-planar configurations, dh ⇡ 0 and, after some
simple algebra, we get

|te f f
p

(q)|
|te f f

p

(0)|
=

1

1+dh

{1+

�dh


1

µ

(1+ r(pp))+
2

p
µ

r(sp)+ r(ss)
��

where q is the pyramidalization angle and the positive quanti-
ties r(pp),r(sp) and r(ss) are the pp(s), sp(s) and ss(s) hop-
ping energies in units of the p one, i.e., r(pp) = |t

s

(pp)|/|t
p

(pp)|,
r(sp) = |t

s

(sp)|/|t
p

(pp)| and r(ss) = |t
s

(ss)|/|t
p

(pp)|. Note that it
is manifestly a decreasing function of dh , i.e. of the pyramidal-
ization angle. More precisely, from the s�weight sum

2

1+ t

+
1

1+µ

+
1

1+l

= 1

it followsN6 that µ⇤ = 2/(t � 1) is the value that µ takes in the
planar configuration, and that

d µ = µ �µ⇤ ⇡ (1+µ⇤)
2

dh

N6 It is not hard to show that this amounts to the statement that a

0 = a/2 must hold in
the planar configuration.

Hence, to first order in dh , it holds

|te f f
p

(q)|
|te f f

p

(0)|
= 1+

�dh


1+

1

µ⇤
(1+ r(pp))+

2

p
µ⇤

r(sp)+ r(ss)
�

This expression also shows that, for fixed r’s, the decrease of te f f
p

with q is faster the smaller µ⇤ is or, equivalently (remember that
µ⇤ = 2/(t �1) and t =�1/cosa), the smaller the a angle is. Ac-
cording to Bent’s rule, such an increased tendency towards small
YXY (equilibrium) angles can be obtained when increasing the Y’s
electronegativity.

As for the effective Coulomb energy, we notice that the bare
matrix element is explicitly a decreasing function of pyramidal-
ization since, to first order in the s-weight of the spl hybrid
(w

l

⌘ dh/(1+dh)), we have

Ue f f ,0
p

⇡Upp �2w
l

(Upp �Usp)

where Upp >Usp holds on physical grounds. Screening adds a fur-
ther decreasing contribution since, as already mentioned above,
it is expected that the effective dielectric constant e

p

is an increas-
ing function of w

l

, being at its minimum in the planar (2D-like)
configuration.

As for the s bond, the effective Coulomb energy is typi-
cally an increasing function of pyramidalization, since Ue f f

s

(q)⇡
Ue f f

s

(0) + dUe f f
s

dw
µ

(0)dw
µ

where dw
µ

< 0 (pyramidalization moves

some s weight of the spµ hybrid into the p-like one, spl ) and

dUe f f
s

dw
µ

(0)⌘ 2w
µ⇤(Uss +Upp �2Usp)+2(Usp �Upp). 0

since the last term on the r.h.s. usually dominates the sum. As for
the hopping energy, an analysis similar to the one given above for
te f f
p

shows that also te f f
s

(q) is a decreasing function of q , since it
holds

te f f
s

(q)

te f f
s

(0)
⇡ 1�d µ

"
1

µ⇤+1

�
|t

s

(sp)|/pµ⇤+ |t
s

(pp)|
te f f
s

(0)

#

where the second term in the square bracket is much smaller than
(1+µ⇤)�1 ⇡ 1/3. However, for the s bond orbital overlap cannot
be neglected and the appropriate hopping energy to look at is that
corrected for the overlap factor, ¯te f f

s

= te f f
s

+ e

µ

Se f f
s

, where e

µ

is
the energy of the spµ orbital. Numerical calculations with real-
istic values of the parameters (see below) show that such over-
lap factor is important and changes this predicted trend, making
¯te f f
s

(q)/¯te f f
s

(0) actually increasing when increasing the pyramidal-
ization angle. In turn, since in the MO limit typically appropriate
for the s bond the behaviour of U is irrelevant, this finding sug-
gests that the s bond is strengthened upon distortion. This con-
trasts with the decrease of the p hopping energy that, in the same
limit, would provide a restoring force toward the planar configu-

ration. In practical situations (see below), the weakening of the
p bond is observed for a wide range of internuclear distances,
even though the MO limit does not apply to the p-bond. As a
consequence, Coulomb repulsion plays yet a role and weakens
(strengthens) such restoring force when increasing (decreasing)
the Ue f f

p

/te f f
p

ratio, e.g., when p donor (acceptor) Y groups are
introduced or when stretching (compressing) the bond. It is ac-
tually straightforward to check that, in the HL limit, provided
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Fig. F3 Hopping (left) and overlap (right) parameters in homonuclear
atom pairs, as functions of the interatomic distances. Results from first-

principles calculations of Ref.s 2,3. Solid and dashed lines for Si and C,
respectively.
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Fig. F4 Typical behaviour of the effective matrix elements upon bend-
ing (left) and corresponding energy contributions to the bending potential
(right), using hopping and overlap parameters appropriate for X=Si,C at
the equilibrium bond length and HXH angle in H

2

X=XH
2

(see text for de-
tails). q is the pyramidalization angle of Fig. F2.

Ue f f
p

decreases sufficiently fast with q , the p bond can even be
strengthened upon pyramidalization.

At a more quantitative level, the behaviour of the effective
overlap and effective hopping and Coulomb energies as func-
tions of the pyramidalization angle q can be investigated nu-
merically for reasonable values of the fundamental parameters
t
s

(ss),S
s

(ss), ..Uss, .., etc..
In practice, the bare Coulomb energies are atomic quantities

that can be obtained from reasonably accurate valence s and p
orbitals. We used Slater-type orbitals and found, e.g., that Upp

takes the values Upp =18.3, 13.3 and 11.9 eV for C, Si and Ge
atoms, while Uss takes smaller values, Uss =17.0,12.3 and 10.9
eV, for the same atoms, respectively. Screening can be introduced
easily at a classical level (see Sec. S2), using appropriate permit-
tivities for the s and p orbitals, es and ep. For carbon, cRPA calcu-
lations on the p atomic orbitals in graphene4 give ep ⇡ 1.8, while
from the vertical triplet-singlet separation energy in CH

2

(1A
1

)
(\HCH ⇡ 102°, n ⇠ sp1.6) we obtain es ⇡ 2.2. For silicon, similar
cRPA calculations for silicene4 give ⇡ 2.78, but this value refers

to p�like AOs rather than pure p orbitals, because buckling of
the silicene sheet implies some admixture with s orbitals. We find
that such orbitals are indeed ⇠ sp10.1 hybrids, and together with
a vertical SiH

2

(1A
1

) triplet-singlet separation of 1.27 eV, and the
fact that the n�like orbital in SiH

2

(1A
1

) is ⇠ s (\HSiH ⇡ 91°) we
obtain es ⇡ ep ⇡ 2.8. For the sake of modeling, eq was then taken
⌘ 1 for the s bond, and to be a simple increasing function of the
s�weight in the spl hybrid for the p bond (eq = (1+w

l

)2).
The one-particle matrix elements t

p

(pp), S
p

(pp), etc. on the
other hand, depend on the distance between the two atoms and
were taken from Ref.2 for the C-C pair and from Ref.3 for the Si-
Si one. They were obtained from scratch from first-principles cal-
culations as one-particle matrix elements between properly com-
pressed atomic orbitals, that are appropriate for atoms in a bind-
ing environment. They were represented analytically by means
of Chebyshev polynomials and are shown in Fig. F3 in a range of
interatomic distances relevant for binding.

We used the above parameters to compute the binding energy
given by our s + p Hubbard bond model (Eq. 1), exploring a
wide range of situations. Fig. F4, left panel, shows the typi-
cal behaviour upon trans-bending of the effective Hubbard pa-
rameters ¯te f f

k ,Ue f f
k (k = s ,p) for both silicon (solid lines) and

carbon (dashed lines). They were obtained at the B3LYP/6-
31++G** bond length of H

2

XXH
2

(RXX = 2.18,1.33 for X=Si,C),
fixing a = \HXH to its equilibrium value (a = 111.67,116.5° for
X=Si,C), but look very similar over a broad range of XX distances
and a angles. As anticipated above, pyrmidalization decreases
the (magnitude) of the effective ¯t, U for the p bond, while it in-
creases their values for the s bond. This holds for both Si and C.
Actually, the relative variations of the parameters do not show sig-
nificant differences in passing from Si to C [even the q = 0 Uk/¯tk
ratios take similar values ⇠ 1.0,4.5 for k = s ,p for both Si and C],
the only exception being ¯t

s

that increases more for Si than for C,
when increasing q , on account of the (relatively) major impor-
tance that pp(s) hopping has for Si (see also Fig. F6). Notice,
though, that a more appropriate comparison requires the calcula-
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Fig. F5 Left: transmission factors for the Si-Si (solid lines) and the C-C
(dashed lines) double bonds at their equilibrium distances. Black and red
lines for the p and the s bond, respectively. Right: corresponding U/t
effective ratios, color coded as in the left panel.
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2

(left). In the right panel the values are given
relative to the s sp one to highlight the different relative importance that
t
s

(ss) has for Si and C.

Fig. F7 Schematics showing the destructive interference between ss(s)
and pp(p) hoppings. Here, p and p0 are two p orbitals centered on the two
X atoms and directed along the pyramid axes (for a C

2h configuration of
Y

2

XXY
2

). Note that, by convention, t ’s are minus the one-particle matrix
elements, and thus display the same sign as the overlap matrix elements.

tion of the effective transmission factors and effective (U/t) ratios,
that, in a sense, account for the non-vanishing overlap between
the hybrids (Sec. S1). These are given in Fig. F5 for both the s

and the p bonds, where a clear difference emerges between the
two types of bonds and, to a much lesser extent, between the two
atoms. What is readily evident from Fig. F5 is that while the s

bond keeps its “character” when bent, the p one is rather sensitive
to the bending (pyramidalization) angle and, besides its weaken-
ing, it undergoes a clear change of character beyond ⇠50°, for
both C and Si. As for the two atoms, (U/t)eff remains very simi-
lar between Si and C, just slightly larger for the former than for
the latter (at q = 0 we find ⇠ 3.9 and ⇠ 3.6 , respectively), con-
sistently with the results of the cRPA calculations of Wehling et

al.

4 on the p�like orbitals in silicene and graphene (⇠ 4.2 and
⇠ 3.6, respectively). Note the differences between (U/t)eff and
the “true” U/¯t ratios quoted above (particularly for the s bond)

that highlights the importance of the orbital overlap.
The subtle difference between Si and C arises from the relative

importance of s and p binding, that is different for the two atoms.
For q = 0 we find that the ratio E

p

/E
s

is slightly larger for C than
for Si (0.22 vs. 0.18), and this makes p bonding more important
for C. As a consequence, p bond opposes more effectively to pyra-
midalization in C than in Si. This is made evident in Fig. F4, right
panel, where the contributions V

s

and V
p

to the bending poten-
tial V (q) = v(R,q)�v(R,0) are reported for H

2

SiSiH
2

(solid lines)
and H

2

CCH
2

(dashed lines) at the XX equilibrium distance and
a = \HXH angle quoted above. The corresponding total bending
potentials are reported as black lines in Fig. F9, in the left panel
for X=Si and in the right one for X=C, and show a trans-bent min-
imum for Si and a flat one for C, in agreement with first-principles

results (a comparison with ab initio results will be presented be-
low). It is clear from Figs. F4,F9 that for both X=Si and C the s

bond triggers pyramidalization and the p bond opposes to it, but
only for carbon the p restoring force is large enough to prevent
distortion.

The relative importance of p vs. s bond strength is one impor-
tant cause for the different behaviour of C and Si, but it cannot
be the only one. After all, it is the bending stiffness of the p bond,
rather than its strength, that determines its resistance and, with
the same token, it is the hardening of the s bond rather than its
strength that provides the driving force to bending. Figures F6,F7
and F8 provides a detailed overview of the contributing hopping
energies at equilibrium XX separation. Fig. F6 shows both the ab-
solute (left panel) and the relative (to t

s

(sp), right panel) values
of the basic hopping energies and highlights the main differences
between the two atoms: for C both the pp(p) and the ss(s) hop-
pings are easier than for Si, and these factors both contribute
to make distortion unfavoured. In this context, the role of the
ss(s) hopping deserves some consideration, since it is somewhat
counter-intuitive: while its role on s bonding is as expected, a
larger ss(s) hopping energy seems to favor a strengthening of the
p bond upon bending, rather than a weakening. The reason why
this is not the case is made evident in Fig. F7, where it is shown
that the ss(s) hopping path interferes destructively with the pp(p)

hopping, thereby determining a weakening of the p bond upon
distortion, which is larger the larger t

s

(ss) is. Actually, it is readily
seen in Fig. F8 that if t

s

(ss) for CC bonding had the same minor
importance that it has for SiSi (t

s

(ss) ⇠ 0.8|t
s

(sp)|) a trans-bent
minimum would occur for H

2

CCH
2

too.
Fig. F9 shows that the effect of the YXY angle is such to increase

bending when decreasing the angle, i.e., when increasing the hy-
bridization index of the spt orbitals involved in the XY s bonds
(or, equivalently, decreasing the index µ of the orbitals used for
XX binding). As mentioned above, the YXY angle can be related
through Bent’s rule to the electronegativity of the substituent Y,
hence this figure shows that increasing the Y electronegativity fa-
cilitates distortion. Analysis of the separate p and s contributions
(Fig. F10) reveals that Y’s electronegativity increases both the s

bond strengthening upon distortion and the p bond “stiffness” (as
anticipated by the analytical results given above, when discussing
the dependence of ¯t

p

on µ⇤ ) but the first prevails on the latter.
Fig. F11 shows the effect of the p Coulomb energy on pyra-
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Fig. F9 Full bending potential similar to Fig. F4, for different values of
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midalization. This energy is an atomic-like quantity that only de-
pends on the nature of the X atom, but can be used as a surrogate
to mimic the behaviour of p-donor or p-acceptor substituents Y
that, increasing or decreasing the effective number of p electrons,
make Coulomb repulsion more or less important [in fact a more
appropriate modeling of the s +p bond would require the fully
machinery of second-quantized formalism that, allowing for frac-
tional numbers of electrons, is able to discuss properly the s +p

open electronic system]. We just consider two limits, that set up-
per and lower bounds for the role of p donating/accepting sub-
stituents: the case of vanishing small (blue lines) and of infinitely
large (red lines) Coulomb energies. The results shown in Fig. F11
for both Si (left panel) and C (right) are as expected: decreasing
(increasing) Ue f f

p

strengthens (weakens) the p bond, that thus
opposes better (worse) to pyramidalization. In other words, our
simple modeling shows that p-acceptors (donors) make distortion
less (more) facile. Note that the case Ue f f

p

= 0 corresponds to a
simple tight-binding modeling, and Fig. F11 shows that such level
of theory is not enough to reproduce the pyramidalization pre-
dicted for H

2

SiSiH
2

by both post-Hartree-Fock and density func-
tional theory calculations.

Finally, Fig.s F12, F13 show the effect of the XX distance on
trans-bending. Stretching the XX bond decreases the strength of

both s and p bonding but, importantly, it makes the p bond less
effective in opposing to bending (because of the increased U

p

/t
p

ratio). As a consequence, a bent structure is predicted for H
2

CCH
2

for CC distances larger than the equilibrium one, while a flat
structure is found for H

2

SiSiH
2

when decreasing the SiSi distance
below its equilibrium value. In this context it is worth analyzing
in some detail the role of the p�resistance and of the s�force to
bending. This can be accomplished by looking at the curvatures
at q = 0 of the corresponding contributions to the bending poten-
tial, namely y

p

= d2V
p

/dq

2|
q=0

and y
s

=�d2V
s

/dq

2|
q=0

, for the
p and the s bond, respectively. These quantities can be given in a
physically sound form by introducing an appropriate cartesian co-
ordinate, a “buckling” coordinate h that describes the distortion.
To this end, we introduce one dummy hydrogen point mass in the
bisection of each YXY angle, 1 Å away from the closest X, and de-
fine the buckling coordinate as h = Z⇤ �Z0

⇤, where Z⇤ and Z0
⇤ are

the Z coordinates of these dummy atoms (the Z coordinate has
been introduced in Sec. S1). The corresponding p and s frequen-
cies - what we have called “p�bending stifness” and “s�bending
moment” in the main article - then read as w

p

=
p

y
p

/4mHd2 and
w

s

=
p

y
s

/4mHd2, where d =1 Å, mH is the hydrogen mass and
h ⇡ 2qd (for q ⇡ 0) has been used. They are reported in Fig. F13,
where it is evident that it is the behaviour of the p−bending stiff-
ness that mainly determines the distortion, the s�moments being
of similar magnitude for Si and C and showing a less marked de-
pendence on the distance. Such p�stiffness is larger for Si at any
XX distance but rapidly decreases with increasing R. As a result,
the one for C at the CC equilibrium distance is larger than the
one for Si at the SiSi equilibrium distance, and this allows the p

bond to resist to bending. We stress again in this context the im-
portance of the ss(s) hopping that for C is comparatively larger
than for Si: it is the destructive interference between this hopping
and the pp(p) one (Fig. F7) that makes the carbon p�bending
stiffness large enough and the CC double bond flat.

Overall, the findings reported in Fig. F12 are in remarkable
good agreement with the results of our first-principles calculations
reported in Fig. 1d - especially in light of the very simple nature
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of our model - except maybe for an “anticipated” distortion of
H

2

CCH
2

, for which the critical distance at which distortion occurs
is ⇠ 1.5 Å in the model rather than ⇠ 1.9 Å as in the DFT results.
The discrepancy is due to the rather flat energetics of H

2

CCH
2

that is found in both the model and the first-principles calculations
and that is hard to capture with precision (see Fig. 3). Actually,
the overall bending energetics compares rather favorably with the
more sophisticated calculations (Fig. 3d), thereby lending strong
support to the validity of our modeling. Further comparison with
ab initio calculations will be presented below where we discuss
an alternative way of binding that is potentially at work when the
fragments have a singlet ground-state.

S5 The n ! p double bond model
We describe here an alternative way of binding in Y

2

X=XY
2

,
the “n ! p bonding scheme”, that might become relevant when
the triplet-singlet separation of the fragment ET S = ET (XY

2

)�
ES(XY

2

) is positive and sufficiently large that the s +p bond en-
ergy (E

s+p

) is not enough to compensate the promotion energy
2ET S that is necessary to prepare the fragments in the triplet state

(i.e., the bonding configuration for the traditional s + p double
bond). In the n ! p bonding scheme the two fragments make
two identical, bent bonds using the (doubly occupied) n orbital
of one fragment and the (empty) p orbital of the other fragment,
both in their singlet ground state (see Fig. F14). The actual na-
ture of these orbitals depends on the specific choice of X: using
Natural Bond Orbital (NBO) analysis5 at the B3LYP/6-31++G**
level we find, for instance, that the n orbital in the singlet 1A

1

state of CH
2

(with a bond angle of 102°) is approximately sp1.6,
while in SiH

2

(bond angle 91°) is essentially pure s.
In view of the above, we write the total energy as e = 2enp

where enp is the Hubbard energy of a single n ! p bond. The
latter follows by the general Hamiltonian given above and reads
as

H |F
0

i |Fni |Fpi
hF

0

| en+ep�2tS
1+S2

fS(enS� t) fS(epS� tnp)

hFa| fS(enS� tnp) 2en +Un �2tnpS
hFb| fS(epS� tnp) �2tnpS 2ep +Up

where fS =
p

2/(1+S2), en (ep) and Un (Up) are atomic-like quan-
tities (i.e., the n (p) orbital and Coulomb energies, respectively)
and |Fni,|Fpi are the n2, p2 ionic configurations. tnp and S, on the
other hand, are the effective n� p hopping energy and overlap,
and depend on the binding geometry. In the above expression,
consistently with a Hubbard description of binding, 2en +Un is
the singlet energy of the XY

2

fragment (ES) and en + ep is the
triplet one (ET ); hence, the triplet-singlet separation can be ex-
pressed in terms of the s� p separation energy (D ⌘ ep � es) and
the s�weight of the n�like orbital (w

µ⇤) as ET S = w
µ⇤D�Un , with

ET S  w
µ⇤D if Un has to be a positive quantity. Setting en = 0 and

neglecting the p2 configuration (we are interested in the case of
large ET S values) we write the secular matrix in the form

enp �H |F
0

i |Fni

hF
0

| e � ET�2

¯tnpS
1+S2

q
2

1+S2

(eS+ ¯tnp)

hFa|
q

2

1+S2

(eS+ ¯tnp) e �ES
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Fig. F13 Bending stiffness of the p bond (blue) and moment of the s

one (red) for Si (left panel) and C (right panel), as functions of the XX
distance. Dashed vertical lines mark the equilibrium bond lengths.
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Fig. F14 Schematics of the n ! p double model in Y
2

X=XY
2

, showing
the n�like orbital on the left XY

2

fragment and the p�like orbital on the
right one.

and readily find that it is singular for

enp = e

0

�

s

e

2

0

+
2

¯t2

np �ES(ET �2

¯tnpS)

(1�S2)

where

e

0

=
(1+S2)ES +ET +2

¯tnpS
2(1�S2)

and where now ¯tnp is understood to be the n� p hopping refer-
enced to en, ¯tnp ⌘ tnp + enS. This result takes a simple form when
neglecting the overlap,

enp =
ES +ET

2

�

s
E2

T S
4

+2t2

np

and gives the total n ! p double-bond energy in the form

e = ES +ET �
q

E2

T S +8t2

np

that can be compared with that obtained from the s +p bonding
scheme

e = 2ET �E
s+p

The only caveat is that such an independent electron pair descrip-
tion of n ! p binding completely neglects exchange effects. In
particular a “Pauli repulsion” is operative at small pyramidaliza-
tion angles q when ET S > 0, because of the overlap between the
two n�type orbitals that essentially host two electrons each (for
a given X-X distance such Pauli repulsion is at maximum for q = 0

where two orbitals face each other, and decreases with increas-
ing q). This repulsion modifies the q ⇡ 0 energetics but does not

affect the minimum region around q = 45° in which we are inter-
ested, hence it can be reasonably modeled by a term proportional
to the magnitude of the n�n overlap (Snn).

In the expressions above tnp (and similarly for S) is the hopping
matrix element between the n�like orbital of one XY

2

fragment
with the p orbital of the other one. The first is coplanar with the
two hybrids spt used for the XY bonds, hence it is a hybrid

|yni=
1p

1+µ⇤
(|si+p

µ⇤ |pi)

where µ⇤ = 2/(t � 1) (see discussion above) and |pi is a direc-
tional p orbital lying on the YXY plane. The latter reads as

|pi= cosq |pX i+ sinq |pZi

where q is the pyramidalization angle, X is the XX bond axis and
Z is othogonal to it (it reduces to the p axis when q = 0). On the
other hand, the p orbital on the other fragment can be taken of
the form

|y 0
pi=�sinq |p0X i+ cosq |p0Zi

where now the primed orbitals refer to the opposite fragment.
Hence, after some simple algebra we obtain

te f f
np =� 1

1+µ⇤
{t

s

(sp)sinq+

+
p

µ⇤ (ts (pp)� t
p

(pp))sinq cosq

 

where t
s

(sp), t
s

(pp) 0 and t
p

(pp)� 0, and likewise

Se f f
np =� 1

1+µ⇤
{S

s

(sp)sinq+

+
p

µ⇤ (Ss

(pp)�S
p

(pp))sinq cosq

 

where S
s

(sp),S
s

(pp) 0 and S
p

(pp)� 0.
We used these expressions, with the overlap and hopping ener-

gies introduced above, to compute the pyramidalization energet-
ics of this n ! p bonding scheme and compared the results with
those of the s +p model, as well as of first-principles calculations
(the B3LYP/6-31++G** results discussed in Sec. S6). Such a
comparison is presented in Fig. F15 where the energy as a func-
tion of the pyramidalization angle is reported for several values
of the Si-Si distance RSiSi, referenced to the singlet-singlet asymp-
tote 2SiH

2

(1A
1

), at its equilibrium structure (\HSiH = 91°). As
before, pyramidalization has been followed at fixed a = \HSiH
angle in disilene (a = aeq =111.67°), but now the short-range,
repulsive Si-Si potential of Ref.3 (the “ionic” potential term) has
been added to make the comparison with ab initio results possi-
ble (in addition, as mentioned above, for n ! p binding we added
a “Pauli repulsive potential”, VP µ |Snn|, that only affects the en-
ergetics at small angles). Fig. F15 shows that n ! p binding is
indeed competitive with standard s + p binding, with energies
similar or even smaller than s +p at large q . The model overem-
phasizes trans-bending but it is surely worth considering when
discussing pyramidalization in H

2

SiSiH
2

. In particular, one sees
from Fig. F15 that its contribution is marginal at small (close to
equilibrium) SiSi distances (left panel in Fig. F15), but becomes
more and more important when increasing RSiSi. For RSiSi ⇠ Req

n ! p binding is favored over s + p only for q & 60° where it
shapes the repulsive wall and makes it less steep than the one
predicted by the s + p model, as observed in the DFT calcula-
tions. A more refined treatment of bonding would likely require
an interaction between the two n ! p and the s +p structures,
but this seems to be not relevant for the equilibrium structure
of H

2

SiSiH
2

. On the contrary, at larger RSiSi distances (see, e.g.,
the case RSiSi = 3.00 Å reported in green in the right panel of
the same figure) n ! p binding dominates over s + p, and the
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Fig. F15 Pyramidalization energetics in model and in ab initio calcula-
tions for H

2

SiSiH
2

, at fixed a = 111.67°, referenced to the singlet-singlet
asymptote (see text for details). Solid and dashed lines for the results
of the s + p and n� p models, respectively, and lines with symbols for
B3LYP/6-31++G** first-principles data. Left panel for RSiSi = 2.00 Å
(black) and for RSiSi = Req = 2.18 Å(red). Right panel for RSiSi = 2.50

Å (blue) and RSiSi = 3.00 Å (green).

predicted bending curves agree much better to the results of our
first-principles calculations to support the view that at such large
SiSi distances interaction is best described as dative bonds be-
tween two bent singlet fragments.

Finally, Fig. F16 reports the results of a similar comparison
for H

2

CCH
2

. Again, energies are referenced to the singlet-singlet
asymptote 2CH

2

(1A
1

) at its equilibrium structure (\HCH = 102°)
(which is now an excited state, since ET S < 0 for CH

2

) and pyra-
midalization has been followed at the equilibrium \HCH angle
in ethylene (a = ae = 116.5°). As expected, for X = C the s +p

bonding model is more “robust” and the alternative n! p double-
bond, though lying at surprisingly low energies, is always higher
in energy for a rather wide range of C-C distances. Only for
RCC & 2.50 Å the n ! p double bond becomes really competi-
tive with s +p but, as for H

2

SiSiH
2

above, a trans-bent minimum
is already appearent at shorter distances in s +p model results,
in agreement with the first-principles calculations.

In closing this section, we stress once again the remarkable
agreement between the results of our model and the DFT data,
that is really impressive in light of the simplicity of the model.

S6 Trans-bending: first-principles results
We present here the results of some detailed first-principles cal-
culations focused on the n ! p binding scheme suggested long
ago by Trinquier and Malrieu6–8 that has found widespread use
since its introduction. The DFT calculations were performed as
indicated in Sec. S10.

Fig. F17 shows disilene energetics along the clever path de-
vised by Trinquier and Malrieu6 to investigate pyramidalization.
From the right to left, the two silylenes are first brought to the
equilibrium distance in an orthogonal bent geometry (step 1),
then recover planarity through trans-bending (step 2), the whole
motion keeping a C

2h symmetry (Fig. F17a). In step 1 the profile
is expected to be rather flat when the fragments are in the sin-
glet state (which is the ground-state for SiH

2

) because two empty
p orbitals face each other, while only a pp(s) interaction is al-

lowed when they are in the triplet (the first excited state) and
this involves the two p orbitals orthogonal to the HSiH planes,
the remaining two p electrons being left unpaired. Upon bending,
the “triplet-triplet” state becomes strongly interacting because
of pairing (and rearrangement) of the latter two e, while the
“singlet-singlet” one becomes attractive because of n ! p bond-
ing. Whether the latter dominates over the first a trans-bent ge-
ometry naturally occurs because n ! p bonding is at its maximum
for q ⇠45°.

In our calculations we considered both the ground, “singlet-
singlet” state (i.e., dissociating into a pair of singlets) and the
first singlet excited state, the “triplet-triplet” state appropriate for
s + p binding. In keeping with the previous analysis we kept
frozen the angle \HSiH at its equilibrium value a, and used the
energy of a pair of singlets at their equilibrium geometry (a

0

) as
a reference. The results are reported in Fig. F17b,c where step 1
was followed till the Si-Si seperation took the equilibrium value,
R = Re = 2.18 Å. The results show that the ground-state interac-
tion in step 1 is attractive, thereby ruling out the possibility that
it keeps its “singlet-singlet” character. Rather, an avoided cross-
ing with the “triplet-triplet” state must occur somewhere between
R ⇠4 Å and Re, and allow the pp(s) bond to show up in the
ground-state energetics. We checked this with the help of Natu-
ral Bond Orbital (NBO) analysis (Fig. F17d,e) that indeed finds
a change of character in the ground state electronic structure: a
pair of (symmetry equivalent) n ! p bonds is appropriate at large
Si-Si distances, while at closer separation two distinct bonds, a s

and a distorted p, emerge. Trans-bending stabilizes further the
binding in the ground-state and leads to a final trans-bent equi-
librium structure which, according to NBO analysis, presents a s

and a distorted p bond (Fig. F17f). Interestingly, the same hap-
pens in the 1Bu electronic state, where the odd symmetry with
respect to inversion implies some antibonding character in the p

bond. This state is indeed analogous to the 1Bu state of ethylene
(1B

1u in D
2h symmetry) which is known to be of pp

⇤ type. Thus,
it presents a reduced resistance to bending, as manifested by the

0 30 60 90
θ / °

-10.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0

E 
/ e

V

0 30 60 90
θ / °

-10.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0

E 
/ e

V

Fig. F16 Pyramidalization energetics in model and in ab initio calcula-
tions for H

2

CCH
2

, at fixed a = 116.50°, referenced to the singlet-singlet
asymptote (see text for details). Solid and dashed lines for the results
of the s + p and n� p models, respectively, and lines with symbols for
B3LYP/6-31++G** first-principles data. Left panel for RCC = Req = 1.33

Å (black) and for RCC = 1.50 Å. Right panel for R = 2.00 Å (blue) and
R = 2.50 Å (green).
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Fig. F17 (a) Schematics of the path considered in the main text. (b,c) DFT energetics along step 1 and step 2, respectively, together with some
important energy values: the triplet-singlet separation (ET S) of the fragments and the strength of the double bond (E

s+p

). Also shown (purple) are the
lowest lying singlet excited states as obtained from linear-responsed TDDFT (solid and dotted lines). In both panels (b) and (c) energy is referenced to
the pair of singlet fragments in their equilibrium geometry (a

0

). (d-f) Relevant (occupied) Natural Bonding Orbitals for the structures (d-f ) indicated in
panels (b) and (c). In (d) the fragments keep their singlet character and the NBOs describe the non-bonding orbitals hosting the lone pairs. In (e,f) the
ground electronic state is best described in terms of a s and a distorted p bond.
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Fig. F18 Energetics of disilene along the path described in Fig. F17, showing the behaviour of trans-bending in disilene for different values of the Si-Si
distance (R =2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 Å as black, red, blue, green, purple, orange and yellow lines in the left panel. Line with crosses for
R = Req). Energy is referenced to the pair of singlet fragments in their equilibrium geometry (a

0

). Purple lines in the right panel are the lowest lying
excited states.
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deeper minimum in the potential energy curve (violet line in Fig.
F17c).

Furthermore, Fig. F18 shows similar results on disilene ob-
tained when bending occurs at different Si-Si separation, R =2.0-
5.0 Å in steps of 0.5 Å. The figure shows how bending evolves
when stretching the Si-Si bond. Here, n ! p binding becomes
increasingly important, and necessarily dominates at large dis-
tances (see also Fig. F15).

Figures F19,F20 report the results of a similar analysis per-
formed on a carbon system (F

2

CCF
2

) that, even though is not
trans-bent, has SET S > 0 and presents a rather small transition
length, R⇤ ⇠1.5 Å [ethylene pyramidalization energetics was
given in Fig. F16, along with model results]. Fig. F19 (left panel)
reports the bending energetics at R = Req, when the molecule
takes a planar geometry because the p bond resists to pyrami-
dalization. The situation changes in the 1Bu excited-state that
behaves rather similarly to the ground-state but presents a trans-
bent minimum because of a softer p bond. Increasing the C-C
distances makes the ground-state unstable to pyramidalization,
consistently with Fig. 3. The main difference with the disilene
case considered above is that, in this case, the energetics along
step 1 is not flat, rather it shows that the two CF

2

fragments ex-
perience a repulsive interaction when they get close to each other
in a trans-bent arrangement (Fig.s F19,F20, right panels). This is
due to the p�donating effect of the Fluorine atoms on the p�like
states that, once e-doped, partially repel each other, as originally
suggested by Trinquier and Malrieu6. When trans-bent in this
way, the molecule prefers the n ! p binding scheme down to very
small distances, according to NBO analysis (Fig. F21, top panel).
However this turns into s +p as soon as the bending is reduced
and a p bond becomes possible. Thus, the trans-bent minima of
Fig. F20 adopt such kind of bonding scheme (Fig. F21, bottom
panel).

Next, we consider the influence of SET S on the distortion. Karni
and Apeloig9 showed long ago how the equilibrium pyramidal-
ization angle in several substitued disilenes correlates linearly
with the fragment SET S. We re-consider here this issue using the
same theory level adopted in this manuscript, i.e. the combina-
tion DFT/B3LYP and 6-31++G**, on a selected set of disilenes
YHSiSH

2

. Fig. F22 shows the pyramidalization angle at the HSiH
unit (left panel) and the binding energetics (right). For the latter,
one distinguishes the “true” binding energy EBE (blue symbols),
i.e. the energy of the reaction

YHSiSiH
2

!YHSi(1A
1

)+SiH
2

(1A
1

)

from the E
s+p

energy (red symbols) which, on the other hand,
refers to

YHSiSiH
2

!YHSi(3X
1

)+SiH
2

(3B
1

)

As observed by Carter and Goddard on olefines10, the latter are
approximately constant, irrespective of the substituents, in a way
that the approximately linear dependence of the former on SET S

reflects just the promotion energy, EBE = E
s+p

�SET S. At a closer
look, E

s+p

increases slightly with SET S, probably because the in-
creased p�donating ability of the species considered destabilizes

the triplet fragments more than the molecule and this determines
an effective strengthening of the double bond. Importantly, while
such relationships suggest a n ! p binding model, NBO analy-
sis of the equilibrium structures show that in all the cases con-
sidered the s +p binding scheme seems more appropriate (Fig.s
F23,F24). An exception may be Y = NH

2

, at the high energy end,
where NBO analysis seems to point to two symmetry equivalent
bonds of n ! p type.

S7 Molecular miscellanea
In this section we present some results of the extensive first-

principles investigations that we performed on a number of model
systems. Fig. F25, for instance, shows the structures of typical Si-
analogues of PAHs that can be used as silicene surrogate, at least
for those properties that are not sensitive to edge effects. The
advantage of introducing such models is that they allow, to some
extent, the use of sophisticated electronic structure methods that
would be computationally prohibitive for extended systems. At
the DFT level, this means that a large variety of functionals, com-
prising (semi)local, hybrid, and hybrid-metaGGA functionals, can
be employed. We considered several functionals, and checked
them in describing the buckling in Si

6

-benzene, Si
10

-naphatelene
and Si

54

-circumcoronene. The results are reported in Table T1
and, even at a quick look, reveal the importance of electron cor-
relation: at the HF level, buckling is severely underestimated, in
accordance with our main findings that correlation plays an im-
portant role on pyramidalization.

Fig.s F26 extends the analysis of the main article, and shows
the effect of reducing the Coulomb repulsion on a Si

60

-fullerene.
The “true” structure (left panel) is seen to be quite different from
a traditional fullerene, and presents several Si atoms that pro-
trud from the “surface”. Reduction of Coulomb repulsion (i.e.,
application of a negative Hubbard on-site energy) gives back the
structure that we know from C. With the same token, Fig.s F27
and F28 show the effect of positive charges on buckling, on both
standard and “exotic” systems.

Finally, Fig. F29 shows some low energy isomers with struc-
ture X

2

Y
4

that become more and more relevant when the triplet-
singlet fragment energy SET S approaches the s +p bond energy
(E

s+p

). Note that already for Y = H, the isomer SiH
3

SiH is (com-
paratively) much lower in energy than its C counterpart, since
the reaction energy of the isomerization H

2

XXH
2

! H
3

XXH de-
creases from ⇠ 72.8 kcal mol�1 for C to only ⇠5.5 kcal mol�1 for
Si. This is suggestive of a very weak p bond in disilene, which is
not entirely true because of the subtle role that the spin state of
the fragments plays in such context.

S8 The s +p model for extended systems
Finally, we describe in this Section how the s +p binding model
can be extended to describe bonding in extended systems. We
consider a honeycomb 2D lattice where each X atoms is surronded
by three equivalent atoms and form with them three equal s

bonds using hybrids spµ and one p bond using the remaining
hybrid spl . If dk is the XX bond length projected on the surface
plane (dk = a/

p
3, where a is the lattice constant) and h is the
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2

C=CF
2

. Purple lines are the lowest lying singlet excited states.

2 4 6 8 10
R / A

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
E 

/ e
V

0 30 60 90
θ / °

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

E 
/ e

V

2ES(α
0
)

2ET(α
0
)

2ET(α)

E
σ+π

2 ∆ETS

2ES(α)

2ES(α
0
)

2ET(α
0
)

1Ag

1Bu

1Ag

1Bu

1Ag

1Ag

1Bu

Fig. F20 Same as in Fig. F18, for F
2

C=CF
2

. Purple lines on the left panel are the lowest lying singlet excited states at R = 2.0 Å.

1–P25 | P15



F2C=CF2

Step 1Step 2

F2C=CF2

Step 1Step 2

Fig. F21 NBO analysis of two configurations with RCC = 2.0 Å, on the top panel for q = 90°and on the bottom for the energy minimum q value.
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2

for different species Y, as indicated, vs. triplet-singlet separation. Right: corresponding
binding (blue) and s +p (red) energies.
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H
18

HF 0.18 0.17 0.18
PBE 0.45 0.44 0.46

B3LYP 0.43 0.41 0.42
M06L 0.40 0.38 0.38
M06 0.48 0.49 0.51

M062X 0.37 0.40 0.42
M06HF 0.33 0.43 0.50

Table T1 Buckling height (h) in the structures of Fig. F25, as ob-
tained with different density functionals and a 6-31++G⇤⇤ basis set. In
hexasilabenzene h was determined from the heights of the Si atoms
above and below the natural plane, which is midway between the
planes defined by up- and down- Si atoms. For Si

10

�naphatelene and
Si

54

�circumcoronene h was defined similarly but at the center of the
molecule only.

buckling height, it is not hard to show that

µ = 2

d2

k +h2

d2

k �2h2

is the hybridization index for the hybrids responsible for s bind-
ing (q = arccos(�1/µ) is the XX angle) and

l =
d2

k
2h2

�1

is the one for the hybrids involved in the p bonds (note that l =

0 for h = dk/
p

2 = a/
p

6, which then represents the maximum
value of the buckling height that can be considered). The binding
energy then follows as

Ecell = 3E
s

+E
p

+3v

where v = v(d) is the ion-core repulsive potential, to be evaluated
at a distance d =

q
d2

k +h2. This binding energy refers to a pair

of X atoms in atomic configuration ..(spµ )3(spl )1 -energetically
equivalent to s1 p3 - and thus lies at an energy 2(esp �Ueff

ss ) above
the ground-state pair. Hence, the cohesive energy per atom reads
as

Ecoh =
3

2

E
s

+
1

2

E
p

+
3

2

v� (esp �Ueff
ss )

where the s and p contribution can be computed as described
in Sec.s S1,S2 (Note that, by construction, this expression takes
partially into account the resonance phenomenon, in that it rep-
resents an incoherent average of resonanting structures). This
expression can be directly checked against first-principles calcu-
lations. To this end, we scanned the lattice constant a for X=Si
and searched the lowest energy structure for each given a. The
results of such investigation (the cohesive energy and buckling
height h) are reported in Fig. F30, left and middle panel, where
they are compared with the results of different DFT calculations.
For the latter, in particular, we considered both plane-wave and
atom-centered one-particle sets, i.e., two rather different set-ups
that give us confidence about the realiability of such calculations.
One sees from Fig. F30 that the s + p binding model describes
the so-called low-buckled Si-monolayer quite well, in that it pre-
dicts a (low) buckled equilibrium structure for a ⇠ 3.8 Å, similarly
to the first-principles calculations (blue symbols). Both the value
of the buckling height (at equilibrium) and of the cohesive en-
ergy are reasonably well reproduced, that is not worse than DFT
itself when employed with a small (DZP) set. Only for large val-
ues of a the model predictions is at odds with the first-principles

results, since the latter always favor (for both Si and Ge) a buck-
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Fig. F23 Natural Bond Orbitals relevant for fragment binding in the disilene structures HYSiSiH
2

, as indicated.
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Fig. F24 Natural Bond Orbitals relevant for fragment binding in the disilene structures HYSiSiH
2

, as indicated.
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Fig. F25 Optimized structures of hexasilabenzene (top left), Si
10

�naphatlene (top right) and Si
54

-circumcoronene (bottom).

Fig. F26 Optimized structures of Si
60

-fullerene. Left: PBE results. Right: Hubbard-corrected PBE results, with ¯U =-10 eV.

Fig. F27 Optimized structures of hexasilabenzene (left) and its single (middle) and doubly charged (right) cations at the M062X level of theory. From
left to right, the buckling height at the M062X/6-31++G⇤⇤ level of theory is 0.37, 0.22 and 0.11 Å, respectively. Hexasilabenzene is found to have six
equal SiSi bonds which are 2.220 Å long, while Si

6

H+
6

turns out to have two short (2.183 Å) and four long bonds (2.253 Å) and Si
6

H++
6

four short (2.245
Å) and two long (2.287 Å) bonds.
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Fig. F28 Optimized structures of 1,10-dehydro-Bi(cycloprop-2-ene) (left) and its silicon analogues with one (middle) or two (right) Si atoms. Top for the
neutral structures and bottom for the doubly charged structures. In the left panels, from top to bottom, the central CC bond stretches from 1.31 to 1.46
Å. In the Si-containing rings, from top to bottom, the SiC bonds shrinks from 1.86 to 1.75 Å for the structures in the middle panels and from 1.84 to
1.76 Å for those on the right.

Fig. F29 Optimized structures of some X
2

F
4

isomers. On the left panel, the most stable Si
2

F
4

isomer, ca. 5 kcal mol�1 more stable than the
double-bridged structure shown in the middle panel. On the right, the most stable Ge

2

F
4

isomer.

led rather than flat configuration. This is likely due to the pres-
ence of a different bonding scheme that, similarly to the n ! p
binding described in Sec. S5, becomes more appropriate at large
separations. Fig. F30 (right panel) also shows the behaviour of
the buckling height when effectively increasing or reducing the
strength of the on-site Coulomb repulsion, in model calculations
with Hubbard corrected DFT. The increase (decrease) of buckling
when strengthening (weakening) such Coulomb repulsion paral-
lels a decrease (increase) of cohesive energy that is qualitately
well described by the s +p model (not shown). Importantly, very
similar first-principles results are obtained when using rather dif-
ferent level of theory (i.e., very different implementation of the
Hubbard correction).

S9 Materials miscellanea
In this Section we describe the results of some representative cal-
culations we performed on extended systems; a detailed account
of the results will be provided in a forthcoming publication.

First, as mentioned in the main text, we used Hubbard cor-
rected DFT calculations to tune Coulomb repulsion between the
p electrons in elemental monolayers. Fig. F30 (right panel) ex-
tends Fig. 5 in that it shows a comparison between two rather
different implementation of the Hubbard correction, namely the
plane-wave/ PAW set-up discussed in the main text, and avail-
able in ABINIT, and the atom-centered / PP set-up available in
Siesta. The main difference between the two is that in the first
case the Hubbard term is introduced inside the PAW sphere only,
while in the second is applied to a “pseudo-atom” defined by lo-

calized AOs. However, as made evident in Fig. F30, the results are
rather insensitive to the such details, provided similar parameters
(e.g., the range of the pseudo-atomic wavefunctions) are used in
both calculations. This gives us confidence on the reliability of
the results, and their physical content.

Next, we consider binding in honeycomb layered materials.
First of all, we assessed the performance of the PBE functional
when adding different variant of the empirical vdW correction,
while keeping the layers flat. We computed the “binding potential
energy curves” of the multilayers by changing the length of the c
axis, which determines the interlayer distance (d = c/2), while
keeping the in-plane lattice at the equilibrium structure it takes
in the monolayer. Fig. F31 shows the resulting cohesive energies
(per atom, in meV) for C, Si and Ge structures. The only experi-
mental data to compare with are the cohesive energy of graphite
measured by11 and its c lattice parameter, indicated as black dot
in Fig. F31a. From such a comparison, one sees that the van
der Waals D3 correction proposed by Grimme12 and based on the
Becke-Jonhson method13 shows a superior performance than the
others, and reproduces both the energy and the equilibrium in-
terlayer distance in graphite quite well. This suggests that for the
artificially flat-layer structures of Fig. F31b,c such level of theory
is the most reliable. We also checked vdW-inclusive density func-
tionals14 - presently available only in combination with AO basis-
sets15 - and found qualitatively similar results, but the presence of
a basis-set superposition error makes difficult to use some recipe
with confidence. A striking difference of the results of F31b,c for
Si and Ge, w.r.t. to those reported in F31a for graphene, is the
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Fig. F30 Si and Ge monolayer structure and energetics. Left: cohesive energy (per atom, eV), for Si and Ge honeycomb monolayers as functions of
the lattice constant a, as obtained at different level of DFT theory. Also shown for comparison, for Si only, the results of the s +p model described in
Sec. S8 (red symbols) and the results of such model for flat monolayers (thin red lines). Middle: monolayer structure for the calculations of the left
panel, as described by the bucking height h. Right: buckling height as a function of the on-site Coulomb energy used in DFT+ ¯U calculations. The DFT
calculations are as follows: (a) DZP / PPs (b) TZ2P++ / PP (c) PW / PPs and (d) PW / PAW method, where DZP (TZ2P) denotes an atom centered set
with double (triple) splitting and single (double) polarization (++ stands for two diffuse functions), PW denotes a plane-wave calculation, PP stands for
norm-conserving pseupotentials and PAW for the projector augemented wave method.

shape and the depth of the binding curves, which suggest the for-
mation, at short distances, of some sort of covalent bond between
layers. Such covalent interaction can be reduced (and removed)
when reducing the Coulomb interaction between p electrons (i.e.,
strengthening the intralayer p bonds), as the model calculations
with Hubbard corrected functionals show (see left panels in Fig.s
F32 and F33). When ¯U is given sufficiently negative values the
interaction turns to be purely van der Waals, and the structures
become stable against buckling. This is seen in the same Fig.s
F32 and F33, right panels, where cuts of the potential energy sur-
face are displayed along the buckling coordinate, for interlayer
distances close to the minimum energy ones.

Finally, extending the results of Fig. F26 concerning 0D sys-
tems, Fig. F34 shows that a reduced Coulomb interaction is effec-
tive in flattening structure also in 1D. Fig. F34 shows the evolu-
tion of the structure of a simple Si-nanotube when using more and
more negative values of ¯U . Applications of these ideas of several
other structures will be presented in a forthcoming publication.

S10 Computational methods
The computational methods used in this work can be briefly summarized
as follows.

For molecules, all-electron density functional calculations were per-
formed using the popular B3LYP hybrid functional to describe exchange-
correlation effects and the Pople’s 6-31++G** atomic-orbital basis-set to
expand the Kohn-Sham orbitals, in a spin-unrestricted framework. Calcu-
lations were performed with the Gaussian16 code 16 using generalized
internal coordinates to perform constrained geometry optimizations and
default tight convergence criteria. Linear-response TDDFT calculations
used the same functional in the adiabatic approximation and followed
Casida’s strategy to compute the excited electronic states, as implemented
in the same code.

For extended systems, spin-polarized first-principles calculations were
performed within the plane-wave PAW approach, as implemented in the
ABINIT code 17,18. The JTH PAW dataset 19 and the bare PBE GGA-
functional were used throughout, except when investigating layered crys-
tals, for which the van der Waals D3 correction proposed by Grimme 12

(and based on the Becke-Jonhson method 13) was added. A rather high
plane-wave cutoff (� 20 Ha) was chosen to ensure tight convergence of
the electronic energy w.r.t. the real-space mesh and integrations over the
Brillouin zone were performed using a 30⇥30⇥1(3) Monkhorst-Pack k-
grids for monolayers (multilayers), introducing a large vacuum region (20
Å) when necessary and adopting tight convergence criteria on forces in
the geometry optimization runs (< 0.001 eV/Å). DFT+ ¯U calculations 20,21

used the Hubbard term inside the PAW sphere only, in its fully rotation-
ally invariant form with double-counting correction in the fully localized
limit 22, as described in Ref. 23. For comparison, all calculations were also
performed with norm-conserving pseudopotentials 24, using the same PBE
functional above and either a plane-wave (ABINIT) or an atom-centered
basis set of double-z plus polarization quality (Siesta15). With pseu-
dopotentials, DFT+ ¯U is available only with AOs and relies on pseudo-
atomic wavefunctions. Similarly for vdW inclusive functionals 14, that
were used to treat dispersion forces in test calculations, in conjunction
with the counterpoise scheme to correct the basis set superposition error.
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