

Trends of the Macroscopic Behaviors of Energetic Compounds: Insights from First-Principles Calculations

Chuli Sun^a, Weijing Zhang^b, Yongjun Lü^a, Feng Wang^a, Wei Guo^a*, Tonglai Zhang^b and Yugui Yao^a

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Supplementary Material

Figure 1S. Lattice energy convergence as a function of plane wave cutoff. (a) PBE. (b) DFT-D3. (c) optB88-vdW. Black for CHZ, red for CHZCP, and blue for CdCP. ΔE is the difference of lattice energy taking the value of 400 eV as reference.

^a-School of Physics, Beijing Institute of Technology, 5 South Zhongguancun Street,

Beijing 100081, P. R. China.

^bAddress here. State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, 5 South

Zhongguancun Street, Beijing 100081, P. R. China.

^{*}E-mail: weiguo7@bit.edu.cn

Electronic Supplementary Information (ESI) available: Supplementary material includes the test of cutoff energy, the total density of states and the integration, the partial density of states, lattice parameters and volumes of the eight TMCP molecular crystals with DFT-D3 correction, in addition to the study of magnetic moment and the band structures by using the PBE+U and SCANrVV10 methods. See DOI: 10.1039/x0xx00000x

	a(Å)	b(Å)	c(Å)	α	β	γ	V _(theory) (Å ³)	V _(exp) (Å ³)	Error (%)
CHZ	9.021	4.219	10.533	900	93.654°	900	400.125	397.120	0.757
CHZCP	10.868	7.227	9.169	900	109.400°	900	679.355	662.940	2.476
MnCP	10.704	8.477	20.645	900	97.731°	900	1856.416	1842.600	0.750
FeCP	10.159	8.495	21.298	900	99.567	900	1812.393	1773.100	2.216
CoCP	10.145	8.443	21.481	900	99.752°	900	1813.261	1803.200	0.558
NiCP	10.141	8.498	21.924	900	107.496°	900	1801.918	1795.400	0.363
ZnCP	10.178	8.485	21.480	900	100.641°	900	1823.131	1756.641	3.785
CdCP	10.210	8.618	22.125	900	107.556°	900	1855.951	1860.400	-0.239

Figure 2S. The total density of states of four complexes. (a) MnCP. (b) FeCP. (c) CoCP. (d) NiCP.

Table 2S. The number of unpaired electrons from the integration of the TDOS of the four molecular crystals. Each complex contains four single molecules; each single molecule contains one metal ion.

	Unpaired electrons (crystal)	Unpaired electrons (single molecule)
MnCP	20	5
FeCP	16	4
CoCP	12.2	3.05
NiCP	8	2

Figure 3S. Partial density of states of metal atoms in the molecular crystals. (a) MnCP. (b) FeCP. (c) CoCP. (d) NiCP.

Journal Name

Table 3S. The magnetic results of FeCP crystals at different volumes and initial magnetic moments.

Final magnetic moment	1606.622	1707.441	1812.393	1921.559	2035.024
Initial magnetic					
moment (μ_B)					
4 4 4 4	0	0	16	0	0
-4 -4 4 4	0	0	0	0	0
-4 -4 -4 -4	0	0	-16	0	0
-4 4 -4 4	0	0	0	0	0
-4 4 4 -4	0	0	0	0	0
4 -4 -4 4	0	0	0	0	0
4 -4 4 -4	0	0	0	0	0
4 4 -4 -4	0	0	0	0	0

Table 4S. The magnetic results of MnCP crystals at different volumes and initial magnetic moments.

Final magnetic moment (1655.983	1754.292	1856.416	1962.429	2072.404
moment (μ_B)					
5 5 5 5	20	20	20	20	20
-5 -5 5 5	0	0	0	0	0
-5 -5 -5 -5	-20	-20	-20	-20	-20
-5 5 -5 5	0	0	0	0	0
-5 5 5 -5	0	0	0	0	0
5 -5 -5 5	0	0	0	0	0
5 -5 5 -5	0	0	0	0	0
5 5 -5 -5	0	0	0	0	0

Table 5S. Magnetic moments of MnCP, FeCP and CoCP crystals under different volumes.

Complexes	exes MnCP		Fe	СР	CoCP	
V(Å ³)	1530.999	1856.416	1730.138	1812.393	1659.386	1813.261
Magnetic mome	nt 4	20	0	16	4	12

Figure 4S. The band structures of molecular crystals using the PBE+U. (a) MnCP. (b) CoCP. (c) NiCP. (d) CdCP. When the system is magnetic, black solid line represents spin up, red solid line represents spin down.

Figure 5S. The band structures of molecular crystals using the SCANrVV10. (a) MnCP. (b) CoCP. (c) NiCP. (d) CdCP. When the system is magnetic, black solid line represents spin up, red solid line represents spin down.