Supporting Information

Enhancing Luminescence of Carbon Nanodots in Films by Tailoring Functional Groups through Alkylaminefunctionalization and Reduction

Minsu Kim,^a Phil Woong Kang,^a Sunjoong Park,^b Duk Young Jeon,^b and Hyunjoo Lee^{a*}

^a Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; ^b Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

Supporting Information contains:

Table S1-S3 Figure S1-S11

^{*} Corresponding author: azhyun@kaist.ac.kr

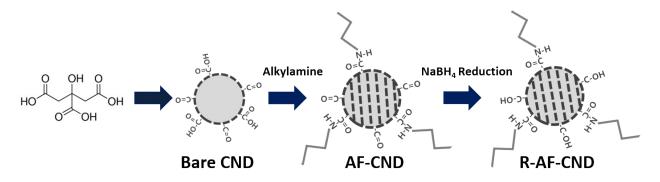


Figure S1. Schematics for the chemical structure of CNDs after alkylamine-functionalization and reduction.

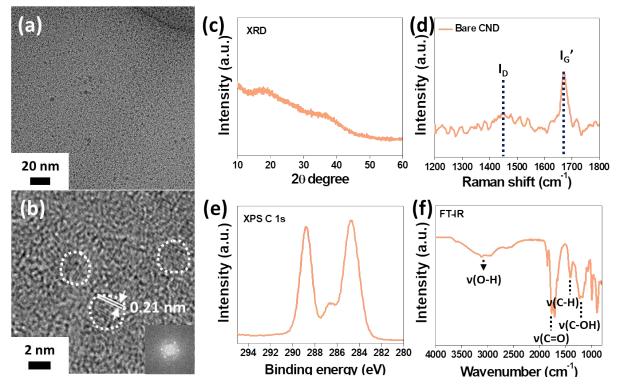


Figure S2. (a, b) HR-TEM image of bare CNDs. The bare CND showed lattice parameter of 0.21 nm corresponding to (100) inter-planar spacing (the inset shows a FFT image). (c) XRD pattern, (d) Raman spectrum with peaks assigned to the corresponding the D and G band, (e) XPS C 1s spectrum, and (f) FT-IR spectrum of bare CNDs with peaks assigned to its corresponding bonds.

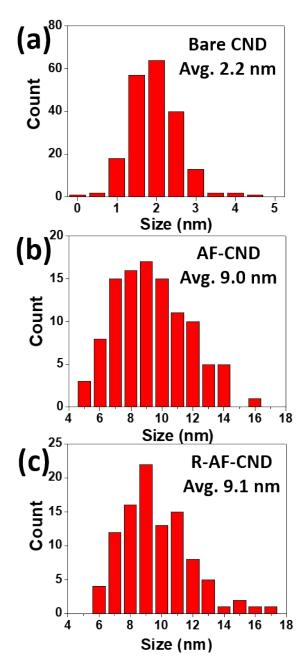


Figure S3. Size histograms of (a) bare CNDs, (b) alkyl chain-functionalized CNDs (AF-CNDs), and (c) reduced AF-CND (R-AF-CND).

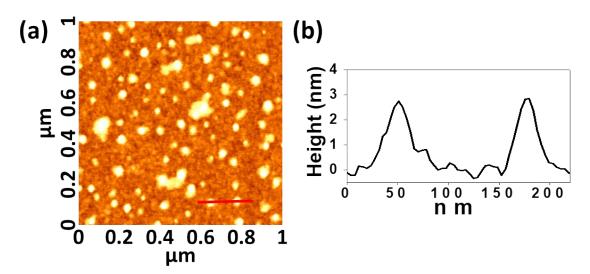


Figure S4. (a) AFM image and (b) a line profile (red line in (a)) of R-AF-CNDs.

Sample	Det. Wav. (nm)	T _{avg} (ns)	τ ₁ (B1)	f_1 (%)	τ ₂ (B2)	f_2 (%)	А	χ²
Bare CNDs in ethanol	461	4.69	1.163 ns (5296.134)	32.2	6.361 ns (2037.265)	67.8	0.448	1.191
AF-CNDs in hexane	450	6.22	2.452 ns (6264.932)	34.1	8.165 ns (3634.328)	65.9	0.719	1.242
R-AF-CNDs in hexane	445	8.88	3.197 ns (4394.988)	20.2	10.32 ns (5389.898)	79.8	1.341	1.186

Table S1. PL decay times (τ_1,τ_2) and average lifetimes (T_{avg}) estimated from the PL decay curves in Figure 2c^{a,b} (excitation at 375 nm)

^a Intensity = A+B1exp(-t/ τ_1)+B2exp(-t/ τ_2) ^b T_{avg} = f₁ τ_1 + f₂ τ_2

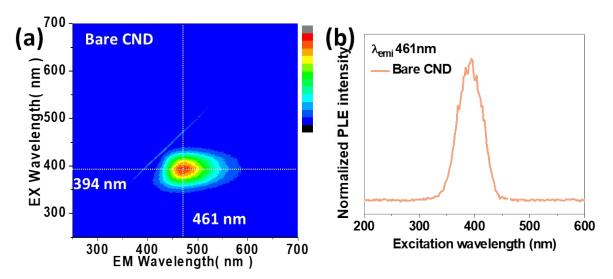


Figure S5. (a) Photoluminescence map and (b) photoluminescence excitation (PLE) spectrum for bare CNDs.

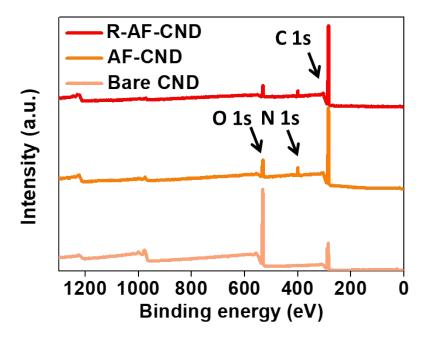


Figure S6. XPS survey spectra of bare CNDs, AF-CNDs, and R-AF-CNDs.

Sample	C (atomic%)	N (atomic%)	O (atomic%)	Others (atomic%)
Bare CNDs	55.6	-	44.4	-
AF-CNDs	85.2	5.2	9.5	-
R-AF-CNDs	88.9	3.8	6.0	1.3

Table S2. The changes in C, N, O contents in bare CNDs, AF-CNDs, and R-AF-CNDs

 determined by XPS survey scan

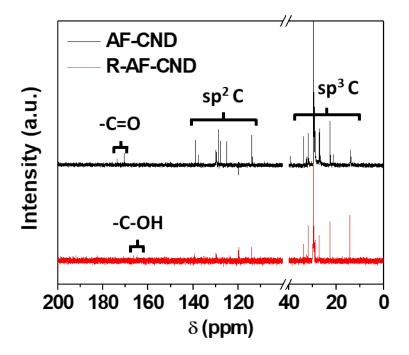


Figure S7. ¹³C NMR results of AF-CNDs and R-AF-CNDs.

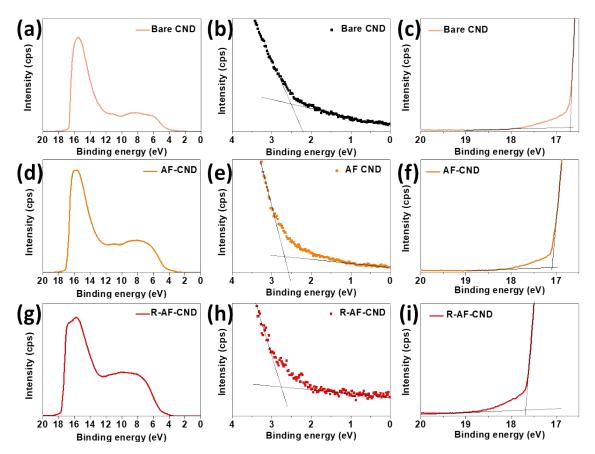


Figure S8. UPS data of (a-c) bare CNDs, (d-f) AF-CNDs, and (g-i) R-AF-CNDs

			<i>,</i>			
Sample	$\lambda_{ex, onset}^{b}$	Egc	E_{cutoff}^{d}	E _{Fermi} d	HOMO ^e	LUMO ^f
	(nm)	(eV)	(eV)	(eV)	(eV)	(eV)
Bare CNDs	394	3.15	16.68	2.53	7.05	3.9
AF-CNDs	394	3.15	17.07	2.68	6.81	3.6
R-AF-CNDs	412	3.01	17.66	2.75	6.29	3.28

Table S3. PLE onset wavelength, energy band gap, HOMO, and LUMO level of bare CNDs,

AF-CNDs, and R-AF-CNDs^a

^a The incident photon energy from He I source is 21.2 eV and the -9 V bias was applied to make a clear boundary in the E_{cutoff} region.

^b The onset wavelength of photoluminescence excitation ($\lambda_{ex, onset}$) were obtained from Figure 3 and Figure S5.

^c The optical band gap (E_g) was obtained by a following equation;

$$E_g = 1240 / \lambda_{ex, onset}$$

^d The E_{cutoff} and E_{Fermi} were extracted by the intersection between the base line and a linear fit from near Fermi energy region (Figure S8 (b,e,h)) and secondary electron cut-off region (Figure S8 (c,f,i)).

^e The HOMO level was calculated by a following equation;

HOMO (eV) = hv (incident photon energy, 21.1eV) - $E_{cutoff} + E_{Fermi}$

^f The LUMO level was calculated by a following equation;

LUMO (eV) = HOMO (eV) - E_g

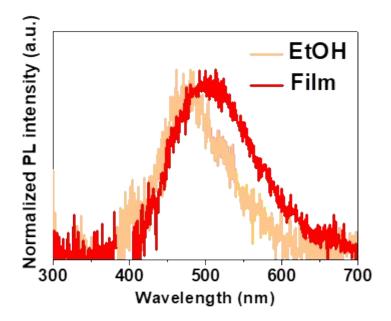
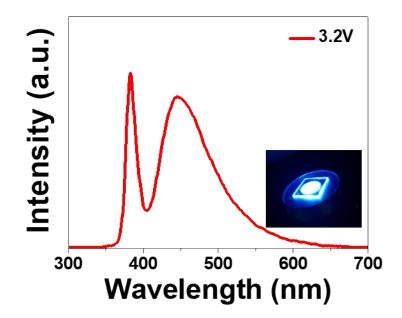



Figure S9. Normalized PL spectra (excitation at 390 nm) of bare CNDs in a solution (ethanol) and a film. The PLQY was 5.9% for the solution and 3.9% for the film. FWHM was 91 nm for the solution and 124 nm for the film.

Figure S10. Photoluminescence spectrum of blue LED using R-AF-CNDs with 385 nm UV chip. The inset photograph shows R-AF-CND film under UV light.

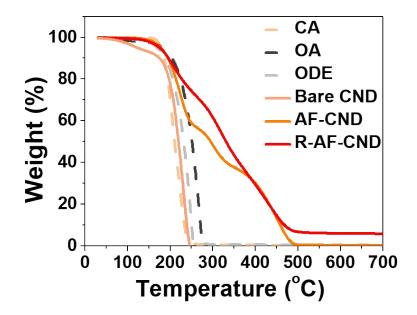


Figure S11. TGA results of the CNDs. CA indicates citric acid, OA indicates oleylamine, and ODE indicates octadecene.