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1. Non-equilibrium Green function (NEGF) based formalism

The NEGF based formalism is selected in our case for precise and fast simulations in Gr-

CrBr3 based heterostructure system. The Poisson-Schrodinger equation has been solved self-

consistently in case of NEGF formalism. The Green’s function ց is attributed by considering 

the energy matrices of left and right  leads;∑𝐿 ∑𝑅

ց(E) = (1) [𝐸𝐼 ‒ 𝐻 ‒ ∑𝑆 ‒ ∑𝐿 ‒ ∑𝑅] ‒ 1

where, I is attributed as identity matrix,  is the scattering matrix, H is assigned as ∑𝑆

Hamiltonian of the system and E is ascribed as an energy eigen value. From equation (1), the 

broadening  and spectral densities (DL, DR) can be evaluated as ),( RL 

 and ],[, ,  
RLRLiRL )(,)(, ERGLEGA RL



For solving the Poisson equation the density matrix [Ɗ] is given by-

[Ɗ] = (2) 

∞

∫
‒ ∞

𝑑𝐸
2𝜋[𝐴(𝐸𝑘,𝑥)]𝑓0(𝐸𝑘,𝑥 ‒ 𝜂)

where,  is defined as spectral density,  is ascribed as the energy in the conduction 𝐴(𝐸𝑘,𝑥) 𝐸𝑘,𝑥

region, ƞ is attributed as chemical potential of the leads and  is the Fermi function. To 𝑓0(.)

implement NEGF formalism, Dirichlet and periodic boundary conditions must be employed 

in the leads and width of the heterostructure. The NEGF method can be evaluated using 

carrier density ntot and substitute it into the Poisson equation to calculate self-consistently and 

iteratively calculate the potential USCF. To evaluate the transmission matrix the self-consistent 

converged values of the carrier density is used T (E, V)-

(3) ][][),( LRRL ATrATrVET  

The transmission channels are calculated by dividing coefficient into the bond contributions 

Ti,j. The channels are parted in such a way that the system is splitted in two parts a and b, then 

the channels across the periphery between a and b which sums to get the transmission 

coefficient as [ref]
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(4) 



biai

jiTT
,

,

From equation (4), it signifies both positive and negative transmission contribution. A 

negative value interprets the backscattering of electron along the bond.

The transmission coefficient can be written as-

 (5) 
km

k
nknm ttT 

Therefore, in eq. (5), the transmission spectrum can be specified from the Bloch state Φn of 

the left lead to Bloch state Φk of the right lead is represented by transmission tnk. The 

transmission coefficient is evaluated by taking the trace of transmission matrix 

𝑇 = ∑
𝑛

𝑇𝑛𝑛

2. Scattering based approach

Scheme S1: Illustration of Gr-CrBr3 heterolayer consisting three regions left lead, scattering 
region and right lead explained through Landauer-Buttiker scattering formalism

We investigated the ballistic transport in a quantum regime exhibiting the scattering region 

(0<z<L) along with the left (z<0) and right (z>L) leads. The electrons are supposed to move 

ballistically in the self-consistent potential consisting reflection as well as transmission which 

is controlled by the scattering region. In the x-y plane of the heterostructure system has a 

periodic repetition where the scattering region embodies propagating states with energy E 
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having the same Bloch wave function which can be classified in k-index. Therefore, in 

considering large supercell in x-y plane limits the calculation in two-dimensional Γ point 

where k-index may be calculated separately. Moreover, the electrons considering spin-

polarized state proceed independently in the self-consistent potential where the scattering 

formalism is solved independently for both the spin directions. However, our approach in Gr-

CrBr3 heterolayer system is to not consider any leads. But as shown in Scheme. S1 in the 

pristine bilayer system the extreme left and right unit cells are acted as corresponding left and 

right leads and the middle region corresponds to the scattering region, respectively. As the 

pristine bilayer system is magnetically active so the scattering based formalism for 

calculating the ballistic transmission spectrum is worthwhile. 

In Scheme. S1, we consider a scattering state of Φ at energy E of a kohn-Sham equation [1]:

, (1)   NLeff VVSE ˆˆ 2

where, Veff is refer to the effective local potential [2] and is the non-local part�̂�𝑁𝐿

(2) ,ˆ
Im

I
n

I
m

n

I
mnNL BV 

where  is associated with the set of projector functions for the Ith atom. The functions  𝛽 𝐼
𝑚 𝛽 𝐼

𝑚

are confined within the spheres of radius rc for Ith atom. The BI
mn coefficient depends on the 

used pseudopotential and local effective potential. 

As energy E is kept fixed as an input parameter and can rewrite as follows:

(3)   ),(~)()(
Im

2
I

I
m

I
n

n

I
mneff RrBrVrE

rr
  

As mentioned, the translational symmetry of the scattering region is having typical Bloch 

wave function in x-y plane:

(4)),,(),( zrezRr Rik
  

rrr

A. Lead region
In the ballistic transmission model for Gr-CrBr3 heterolayer is sandwiched between the 
left and the right leads (z<0, z>L), kept at a distance L. The leads and the scattering state Φ 
originates from Bloch wave function ϕb of the left lead can be written as:
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Φ = {∅𝑏 + ∑
𝑎 ∈ 𝐿

𝑟𝑎𝑏∅𝑎, 𝑧 < 0

∑
𝑎 ∈ 𝑅

𝑡𝑎𝑏∅𝑎, 𝑧 > 𝐿 �                                                                                                           (5)

where, summation over a L (a R) incorporates the generalized propagating Bloch wave  

function in the left (right) lead with energy E which grow or decay towards the left (right) 
lead. Both propagating and evanescent Bloch states represents Complex band structure of 
a material which obeys the Bloch wave function in x-y plane. Therefore, beside the z-
direction the translational symmetry does not exist which satisfies:

 ),,(),( zrelzr b
ikl

b   
(6)   where, k is the complex number and l is length of the unit cell of the 

corresponding heterolayer. The corresponding wave functions ϕb for Im k = 0 and Im k  ≠
0 illustrates the evanescent (decay or growth) and propagating states, respectively for 
evaluating complex band structure.

The general solution for the unit cell of the lead z0<z<z0+l can be expressed as-

)()()( Im
Im

Im,, rScrScr bn
n

bnb  

(7) where, Sn is independent of the homogenous equation-

(8) ),()]([)( 2 rSrVrES neffn 

where Veff is the local effective potential and SIm is the specific solution of the 
inhomogeneous equation:

)()(])([)( Im
2

Im  


 RrerSrVrES II
m

R

Rki
eff 

(9) Here,  is the set of projector function which is localized within the center of Ith 
I
m

atom, is the position of the vector in the Ith atom of the unit cell. Both Sn and SIm are I
periodic in x-y plane and sum over imaginary states necessitates all the projections in the 
unit cell.

The function of equation (7) can determine the coefficients of which is given by-bcIm,

          b
I
n

n

l
mnb Tc 
~

Im,

(10) Therefore, k is the allowed values for a stated energy E which can be modify by 
equating eq. (2) along the z-direction of the function ϕb:

          ),,(),( 00 zrelzr b
ikl

b   

(11)
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            (12)),(),( 0
'

0
' zrelzr b

ikl
b   

Thereafter, by equating eq. (3) in eqs. (10) - (12) it shows that the equations corresponds 
to the generalized eigen value can be expressed as-

CX= DX,           ikle
(13) where, C and D are the matrices. To determine the generalized Bloch wave functions 
at energy E, the complex k components and coefficients of X needs to be solved.

B. Scattering region
The scattering state Φ lies in the region (0<x<L) which can be determined similar to that 
of the eq. (7):

           (14) ),()()( Im
Im

Im rScrScr n
n

n  

The scattering state Φ is fully illustrated by the coefficients {cn, cIm, rab, tab}. The 
coefficient cIm can be illustrated by imposing the solutions of eqs. (8) and (9):

            I
n

n

I
mnBc 
~

Im

(15) Another set of equations on cIm of the scattering region which intersects with the 
boundaries of the leads can be written as-

           (16)   I
n

n

I

mna
a

abb Bcrcc 
~

Im,Im,Im

and scattering region intersects in the plane z=0 can be written as- 

           (17) a
a

ab
I
n

I

mnn
ctc B Im,

~

Im   

Solving the eqs. (15)-(17) will give the unknown coefficients . ababn trcc ,,, Im

C. Conductance Calculation
By considering the Landauer-Buttiker formalism, the conductance G in the ballistic 
regime is associated with the total transmission T near the Fermi energy is given by 

G=G0T, where is the conductance of quanta per spin. The total transmission is 
h
eG

2

0 

expressed as-

𝑇 = ∑
𝑎𝑏

|𝑇𝑎𝑏|2 = 𝑇𝑟[𝑇 + 𝑇],                                                                                                                (18)

T is the normalized matrix for the transmission amplitudes , where Ib is the ab
b

a
ab tI

IT .

current probability of the Bloch wave function ϕb in the z-trajectory. The summation over 
a, b signifies the states of the polarized spin at the selected energy.
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Therefore, to determine the unitary coefficients from the set of Bloch wave functions ϕb 
the eigen vectors of Hermitian matrix is considered in the conductance eigen channels. 
The Hermitian matrix is diagonal in the basis set of eigen values. So, the conductance can 
be expressed as-

           
a

aTGG 0

(19) where, Ta is the transmission probability for ath eigen channel.

In this context, we need to calculate the total transmission T, the current Ib is propagated 
through the Bloch state ϕb in the z-trajectory. Therefore, in general the expression of 
current flowing can be written as-

          (20) 











 




  rdrRrdzBII bI

z
I
mb

I
n

n

I
mnbb

rrr
2

Im

0 )()(~Im2
0



For every Bloch propagating state ϕb it should have , where Tab and Rab 1
a

ab
a

ab RT

are the coefficients of transmission and reflection, respectively.

Further, the assumption from eq. (18) signifies that the current operator is diagonalized in 
the basis of Bloch wave function eventually which is not true. Merging of degenerate 
states may occur in same k in z-trajectory. Therefore, Bloch wave functions must be 
orthogonalized with respect to current operator before imposing in eq. (18) for obtaining 
the total transmission calculation. The current operator Ibk are given by-

 











 







 rdrrdzrdrrdzBiII b

II
m

z

b
I
nb

II
m

z

b
I
n

n

I
mnbkbk

rrrrrrrr 22

Im

0 )()()()(~ 00



           (21) 
where,

           (22) 







 















 rdzr

zz
zr

zriI bzz
b

zz
b

bbk
rr

r
r 2

00
0 ),(||

),(
),(

00





Therefore, the conductance in ballistic regime is calculated in three different steps. In first, 
we perform the self-consistent calculation using plane-wave code to get the stable atomic 
configuration with screened potential Veff and . Secondly, eq. (21) has been used to I

mnB
calculate the complex band structure of the propagating Bloch wave function with respect 
to the current operator. The unit cells of the lead are considered from the supercell of the 
pristine bilayer, which is not selected in the scattering region. Lastly, the transmission 
coefficients tab for rightward Bloch state ϕb of the left lead and obtain total transmission T 
in the eigen channel.

3. Interfacial Polarization

Van der Waals 2D heterostructure consists of heterogeneous mixtures of two or more 
constituents. In this structure, electric field polarization (known as the Maxwell-Wagner-
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Sillars effect) [3] occurs in the interface of the heterostructure system. Thus, the externally 
applied electric field generates charge which is distributed over the interface of the 
heterostructure system and migrates at interface forming large dipoles. These induced dipoles 
exhibit enhanced inertia and require sufficient time (low field frequency) and thermal 
agitation to follow the alternation of the applied electric field. 

The theoretical analysis of the phenomenon leads to a dipolar effect with an additional term 
regarding the possible contribution of the charges to the overall conductivity of the system. 
Interfacial polarization can be described by the equations [4]:

        (23)
'

2 2

( )( )
1
s    
 





 


        (24)

''
2 2

0

( )( )
1
s    

   


 


where εs, ε∞ are the values of the real part of permittivity at low and high frequencies, σ the 
conductivity of the system, τ the relaxation time, ω the angular frequency of the applied 
electric field, and ε0 the dielectric permittivity of free space (i.e. the interplanar spacing). 
Parameters εs, ε∞, and σ are functions of the constituents’ permittivity (εi), conductivity (σi), 
and volume fraction (νi) and are given by the relations: 

          (25)

'

2

2( )

i i
i

i
s

ii

i

 









           (26)
'

1

( )ii

i




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           (27)

1

( )ii

i








Interfacial polarization is present in 2D heterostructure, especially in the case of a conductive 
reinforcing phase because of the coexistence of heterogeneous interfaces and stable 
crystalline phases [5]. The dramatic increase in interfacial area in heterostructures sets 
interfacial polarization as a predominant physical effect for their electrical performance.
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Relaxed Supercell used in calculations:

Table S1:

Bravais Lattice: Hexagonal

Lattice parameters: 

a = 6.34 Å, c = 45.11 Å

Coordinates of atoms in supercell (fractional coordinates)

C       0.238096   0.047619   0.557630

C       0.476191   0.095238   0.557630

C       0.952381   0.190476   0.557630

C       0.190476   0.238095   0.557630

C       0.666667   0.333333   0.557630

C       0.904762   0.380953   0.557630

C       0.380953   0.476190   0.557630

C       0.619048   0.523810   0.557630

C       0.095238   0.619047   0.557630

C       0.333334   0.666667   0.557630

C       0.809524   0.761905   0.557630

C       0.047619   0.809524   0.557630

C       0.523810   0.904762   0.557630

C       0.761905   0.952381   0.557630

Br      0.523866   0.166667   0.505976

Br      0.171406   0.519127   0.505976

Br      0.818946   0.814207   0.505976

Cr      0.838073   0.500000   0.474163  

Cr      0.504739   0.833334   0.474163  

Br      0.819116   0.166667   0.442369  

Br      0.523696   0.518957   0.442369  

Br      0.171406   0.814377   0.442369  
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Figure S1: Relaxation of simulation cell by BFGS method upto an interatomic force of 0.01 

eV/Å.
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Figure S2: Convergence of SCF for further density of states and band structure calculations.
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Charge density contour profile for Gr-CrBr3 heterostructure system

Figure S3: Charge density contour plot of Gr-CrBr3 heterostructure.



13

Modulation of split-off energy gap with the variation of external electric field in reverse 
and forward bias in Gr-CrBr3 heterostructure

Figure S4: The Band diagram Gr-CrBr3 heterolayer at 0.1 V/Å.

Figure S5: The Band diagram Gr-CrBr3 heterolayer at -0.1 V/Å.
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Figure S6: The Band diagram Gr-CrBr3 heterolayer at 0.2 V/Å.

Figure S7: The Band diagram Gr-CrBr3 heterolayer at -0.2 V/Å
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Figure S8: The Band diagram Gr-CrBr3 heterolayer at 0.3 V/Å

Figure S9: The Band diagram Gr-CrBr3 heterolayer at -0.3 V/Å
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Figure S10: The Band diagram Gr-CrBr3 heterolayer at 0.4 V/Å

Figure S11: The Band diagram Gr-CrBr3 heterolayer at -0.4 V/Å
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Figure S12: The Band diagram Gr-CrBr3 heterolayer at 0.5 V/Å

Figure S13: The Band diagram Gr-CrBr3 heterolayer at -0.5 V/Å
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Figure S14: The modulation in magnetic moment value of the heterostructure in presence of 

external electric field (Z direction). The applied field is varied between 0 to 0.5V/Å in 

forward biasing direction and varied between 0 to -0.5V/Å in reverse biasing direction. The 

same results for CrBr3 monolayer sheet is shown for comparison purpose. 
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