SUPPORTING INFORMATION

Ligand shell size effects on one- and two-photon excitation fluorescence of zwitterion functionalized gold nanoclusters

Martina Perić, Željka Sanader Maršić, Isabelle Russier-Antoine, Hussein Fakhouri, Franck Bertorelle, Pierre-François Brevet, Xavier le Guével, Rodolphe Antoine* and Vlasta Bonačić-Koutecký*

Determination of the stoichiometry of AuZw NCs by XPS and mass spectrometry measurements.

XPS measurement (Leguevel, Nanoscale 2014,6,8091-8099, table 2 ou fig S8 of supporting information) show that for AuZw 1:1; 1:3 and 1:5 the ration Au^0 / Au^+ is ≈ 2 . Of course, it's an average, a mix of different sizes of clusters. (for the new data we don't have the file to extract the ratio Au^0 / Au^+ , and we supposed that this ratio is similar).

Assuming that fluorescence properties are given by a small core: tetramer Au4, we can build a simple model: a gold core with $4Au^0$ and $4x2=8Au^+$ (8 thiols bound to this 8 gold= 4 Zw, assuming that each S from the ZW can bind to one Au+)

Our starting model of the cluster is thus $Au_{12} Zw_4$

XPS measurement can also give a ratio between Au and Sulfur atoms (table 1 same publication). By mixing theses results with mass spectrometer data (Shen, APL MATERIALS, 5, 053404(2017) we can have an estimation of the number of ligands in the shell(s).

For AuZw 1:1 (\approx 11kDa) we can take Au₁₂ZW₂₂: Au₁₂ Zw₄ + \approx 18 Zw in the shell

For AuZw 1:2 (\approx 17kDa) we can take Au₁₂ZW₃₇: Au₁₂ Zw₄ + \approx 33 Zw in the shell

For AuZw 1:5 (\approx 29kDa) we can take Au₁₂ZW₆₆: Au₁₂ Zw₄ + \approx 62 Zw in the shell

Figure S1 : Experimental linear absorption and emission spectra for AuZw NCs in water.

Figure S2 : Experimental two-photon excited fluorescence spectrum of AuZw 1:5 NCs in water and compared to fluorescein. (800 nm laser excitation).

Figure S3: OPA spectrum obtained by QM-TDDFT approach for Au12Zw4. Leading excitations of S_1 and S_2 OPA states are shown on the right side.

Figure S4: Comparison of TD-DFT OPA and TPA spectra obtained for Au₁₂L₄ (L=S-CH₂-CH₂-CH₂-S). Leading excitations of S₁ and S₂ OPA states and of S₃₇ TPA state are shown on the right side.

Figure S5: Comparison of TD-DFT OPA and TPA spectra obtained for $Au_{12}L_4$ (L=S-CH₂-CH₂-CH₂-S) with point charge q=+1 (red circle) placed close to central Au atom. Leading excitations for S₈ of TPA is shown on the upper right side. The leading excitation of OPA S₁ state (left bottom) as well as the resonance between OPA and TPA states are shown on the right bottom.

Figure S6: Comparison of OPA and TPA spectra obtained by QM/MM approach for Au₁₂Zw₄ (QM-TDDFT) with point charge q=+1 placed close to central Au atom (cf S4), with 1 :1 and 1 :5 ratio of Au :Zwitterions (MM)