The axial/equatorial conformational landscape and

intramolecular dispersion: new insights from the rotational

spectra of monoterpenoids

D. Loru, A. Vigorito, A. F. M. Santos, J. Tang, M. E. Sanz*

Department of Chemistry, King's College London, SE1 1DB London, UK

Supplementary information

Table of Contents

Experimental Methods

Tables S1-S3. Theoretical spectroscopic parameters of the conformers of carvone, limonene and perillaldehyde.

Tables S4-S6. Experimental spectroscopic parameters of the observed conformers of carvone, limonene and perillaldehyde.

Tables S7-S19. Measured frequencies of the rotational transitions of carvone, limonene and periallaldehyde, and their corresponding isotopic species.

Table S20. Experimental and theoretical vibrationally-corrected rotational constants (A_0, B_0, C_0) of the observed conformers of carvone.

Tables S21-S28. Experimental spectroscopic parameters of the observed isotopologues for the conformers of carvone, limonene and perillaldehyde.

Structural Determination

Table S29-S36. Substitution coordinates of the carbon atoms of the most abundant conformers of carvone and limonene, and all the conformers of perillaldehyde.

Table S37-S40. Effective (r_0) structures of the most abundant conformers of carvone and limonene, and all the conformers of perillaldehyde.

Table S41-S43. Theoretical spectroscopic parameters of the conformers of carvone, limonene and perillaldehyde calculated at the M062X-GD3 level of theory.

Figures S1-S3. Geometries of the predicted conformers of carvone, limonene and perillaldehyde calculated at the MP2/6-311++G(d,p) level of theory.

Figure S4,S5. Calculated differences between experimental and theoretical rotational constants for the four observed conformers of limonene and perillaldehyde.

Figure S6. Calculated differences between experimental and theoretical vibrationally-corrected rotational constants A_0 , B_0 , C_0 (in MHz) for the five observed conformers of carvone.

Figure S7. Comparison of the theoretical structures of perillaldehyde (full molecular drawing) with the r_s atom coordinates of the C atoms (blue spheres).

Figure S8-S10. Interconversion barriers between the conformers of carvone, limonene and perillaldehyde calculated at the MP2/6-311++G(d,p) level of theory.

Figure S11. Interconversion barriers between conformers Ax-C and Eq-C of carvone at the B3LYP-D3BJ/6-311++G(d,p) and MP2/6-311++G(d,p) levels of theory.

Figure S12-S14. NCI plots for the observed conformers of carvone, limonene and perillaldehyde showing the intramolecular interactions..

Experimental Methods

Commercial samples of R-(-)-carvone (98%), R-(+)-limonene (97%) and S-(-)-perillaldehyde (91%) were purchased and used without further purification. The three terpenes have relatively low vapour pressures and so they were placed in a bespoke heated nozzle and were slightly heated to temperatures of 380 K (carvone), 340 K (limonene) and 406 K (perillaldehyde) to increase their concentration in the gas phase. The molecular beam was created by seeding the vaporised molecules into the carrier gas (Ne, He or Ar) at backing pressures of 5 bar, and supersonically expanding the mixture into the vacuum chamber through a pulsed nozzle. Molecular pulses of 1000 μ s when using Ne and 600 μ s when using He and Ar were found to be optimal. Four 4 μ s chirped pulses spaced 30 μ s and spanning the 2-8 GHz frequency range were applied to polarise the molecules in each molecular pulse. Free induction decays were collected for 20 μ s after each polarisation pulse, and transformed to the frequency domain using a fast Fourier transform algorithm. Final spectra were obtained by coherently adding 1.1 million FIDs for carvone, 1.0 million FIDs and perillaldehyde, and 1.5 M FIDs for limonene.

Carvone	Eq-A					Eq-C					Eq-a				
	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ
A (MHz)	2226.1	2252.8	2214.5	2239.1	2241.7	2246.7	2276.4	2234.9	2258.8	2262.3	2195.6	2223.0	2191.5	2215.0	2218.1
B (MHz)	658.4	660.3	646.9	653.1	655.1	673.9	679.1	663.4	668.6	671.4	680.8	680.8	673.4	679.6	682.5
C (MHz)	581.3	582.0	571.0	576.8	578.4	556.7	553.4	547.0	551.8	553.0	562.3	562.3	548.2	552.4	553.7
$\mu_{a}\left(\mathrm{D}\right)$	1.8	1.9	1.9	1.9	1.8	1.9	2.1	1.9	2.0	2.1	1.6	1.8	1.8	1.8	1.8
$\mu_{b}\left(\mathrm{D} ight)$	2.7	2.8	3.0	2.9	2.7	2.8	3.0	3.0	3.2	3.2	2.5	2.5	2.7	2.7	2.7
$\mu_{c}\left(\mathrm{D} ight)$	0.7	0.8	0.7	0.8	0.4	0.6	0.5	0.7	0.4	0.6	0.4	0.2	0.4	0.4	0.4
τC_{10} C ₉ C ₆ C ₅	127.1	129.7	122.5	110.9	124.9	-10.6	-3.9	-11.2	-10.9	-10.1	-102.2	-123.1	-111.8	-113.2	-113.8
$\Delta E (cm^{-1})$	0	13	0	0	0	163	0	120	111	85	238	62	141	145	143
ΔE_{ZPC} (cm ⁻¹)	0	32	0	0	0	164	0	136	135	99	235	123	171	176	137
$\Delta G^{380} (cm^{-1})$	0	24	0	0	0	139	0	215	191	175	189	151	217	187	242
	Ax-a				Ax-C							Ax-A			
	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ
A (MHz)	1581.7	1612.6	1651.7	1649.5	1638.2	1618.4	1674.1	1722.3	1719.3	1706.3	1779.5	1816.7	1822.6	1812.1	1811.9
B (MHz)	941.1	923.6	858.3	879.8	893.2	921.2	896.2	840.2	855.4	867.9	842.6	834.0	807.6	820.4	825.3
C (MHz)	806.0	792.9	742.4	761.9	771.1	810.0	783.9	733.3	749.6	761.3	774.9	765.5	740.0	753.6	758.2
$\mu_{a}\left(\mathrm{D} ight)$	1.1	1.3	1.5	1.8	1.4	2.2	2.3	2.4	2.4	2.4	1.2	1.3	1.4	1.3	1.3
$\mu_{b}\left(\mathrm{D} ight)$	2.6	2.7	2.8	2.8	2.8	2.6	2.9	3.1	3.1	3.1	2.9	3.1	3.2	3.2	3.2
$\mu_{c}\left(\mathrm{D}\right)$	1.1	1.2	1.4	1.3	1.3	0.6	0.7	0.6	0.6	0.7	0.5	0.5	0.5	0.5	0.5
τC_{10} C ₉ C ₆ C ₅	-120.9	-119.7	-112.6	-113.6	-115.5	9.6	4.0	-5.8	-3.3	-1.3	112.6	114.8	116.7	115.3	115.5
$\Delta E (cm^{-1})$	128	293	779	527	370	12	164	726	465	303	261	364	785	433	318
ΔE_{ZPC} (cm ⁻¹)	196	402	801	569	428	122	343	769	506	355	317	456	833	459	368
$\Delta G^{380} (cm^{-1})$	361	495	807	609	554	364	586	898	610	480	476	526	1031	635	564

 Table S1. Theoretical spectroscopic parameters of the six stable conformers of carvone.

Limonene		Eq-A						Eq-C			Eq-a				
	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ
A (MHz)	3054.6	3075.2	3060.3	3060.1	3066.6	3052.1	3072.2	3059.4	3058.8	3062.9	3028.9	3062.3	3046.6	3042.1	3049.5
B (MHz)	719.3	723.3	710.4	713.8	715.9	744.2	749.3	735.2	737.4	741.3	740.5	756.3	734.1	737.1	740.5
C (MHz)	680.8	680.6	673.1	675.8	677.7	648.2	646.4	641.7	643.6	644.8	653.9	638.4	643.4	645.4	646.4
μ_a (D)	0.3	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.5	0.3	0.3
$\mu_b(\mathrm{D})$	0.3	0.4	0.2	0.3	0.3	0.1	0.2	0.2	0.2	0.2	0.5	0.7	0.3	0.6	0.6
μ_{c} (D)	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.2	0.1	0.4	0.2	0.2
τC_{11} C ₉ C ₆ C ₅	128.7	132.8	120.3	126.6	126.6	-11.4	-6.8	-12.5	-12.5	-12.5	-96	-122.7	-101.2	-101.5	-101.4
$\Delta E (cm^{-1})$	57	4	0	0	0	222	0	100	110	103	328	179	188	234	213
ΔE_{ZPC} (cm ⁻¹)	9	45	0	0	0	169	0	88	101	88	273	184	157	186	171
$\Delta G^{340} (cm^{-1})$	0	60	0	0	0	122	0	111	53	57	230	220	113	67	74
	Ax-A					Ax-a						Ax-C			
	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ
A (MHz)	2194.7	2201.2	2320.7	2264.4	2269.4	2132.2	2133.6	2264.9	2261.2	2229.3	1896.9	1960.8	2058.3	2005.5	1996.4
B (MHz)	943.9	944.5	879.7	907.4	912.4	952.3	954.4	892.2	900.2	915.0	1024.2	999.6	940.8	964.4	974.9
C (MHz)	919.3	920.8	864.9	886.7	891.3	921.5	918.3	860.9	877.3	887.5	960.9	928.4	863.6	890.2	901.7
$\mu_{a}\left(\mathrm{D}\right)$	0.4	0.5	0.6	0.6	0.6	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1
$\mu_b(\mathrm{D})$	0.1	0.1	0.1	0.1	0.1	0.5	0.6	0.6	0.6	0.6	0.1	0.2	0.2	0.2	0.2
$\mu_{c}\left(\mathrm{D}\right)$	0.0	0.0	0.1	0.1	0.1	0.2	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.3	0.3
τC_{11} C_9C_6C_5	90.8	87.8	101.3	96.4	96.4	-112.9	-115.2	-105.9	-102.5	-102.5	23.5	20.0	11.4	15.6	15.6
$\Delta E (cm^{-1})$	551	590	1065	739	625	0	41	565	258	139	932	645	1149	932	782
ΔE_{ZPC} (cm ⁻¹)	590	643	1123	764	670	0	82	606	289	152	1027	771	1251	1027	876
ΔG^{340} (cm ⁻¹)	738	719	1258	792	703	80	166	742	346	108	1081	917	1428	1081	931

 Table S2. Theoretical spectroscopic parameters of the six stable conformers of limonene.

Perillaldehyde		Eq-A_0						Eq-C_	0		Eq-a_0				
	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ
A (MHz)	2888.0	2900.8	2890.0	2891.5	2896.6	2845.0	2858.6	2853.8	2851.9	2857.8	2905.2	2934.2	2923.5	2920.0	2927.1
B (MHz)	536.0	539.8	531.2	533.0	534.6	550.8	555.6	544.6	546.1	548.5	544.1	554.7	540.3	541.7	543.7
C (MHz)	507.9	509.9	503.3	504.9	506.4	489.8	490.2	486.3	487.6	488.7	492.3	484.1	485.6	487.2	488.3
μ_a (D)	2.7	2.9	3.1	3.1	3.1	2.7	2.9	3.1	3.1	3.1	2.8	3.1	3.3	3.3	3.3
$\mu_b(\mathrm{D})$	1.5	1.6	1.5	1.5	1.5	1.2	1.2	1.1	1.1	1.1	1.6	1.8	1.6	1.6	1.6
μ_{c} (D)	0.2	0.1	0.3	0.2	0.2	0.5	0.6	0.6	0.6	0.6	0.2	0.1	0.1	0.2	0.2
$\tau(C_8 - C_7 - C_1 - C_2)$	128.7	131.4	125.7	126.9	126.5	-11.3	-6.7	-14.1	-14.0	-12.8	-95.6	-122.4	-100.8	-100.2	-100.8
$\Delta E (cm^{-1})$	1335	1141	1152	1148	1168	1506	1148	1271	1261	1277	1606	1320	1339	1366	1366
ΔE_{ZPC} (cm ⁻¹)	1204	1118	1082	1089	1092	1373	1120	1197	1207	1198	1473	1293	1275	1303	1291
$\Delta G^{406} (cm^{-1})$	1035	1093	1012	1019	1003	1178	1111	1128	1140	1125	1269	1306	1169	1180	1147
	Ax-a_0				Ax-A_0							Ax-C_	0		
	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ
A (MHz)	2051.0	2056.1	2165.1	2157.3	2134.0	2086.4	2110.2	2177.3	2142.5	2148.7	1722.0	1788.5	1892.5	1828.1	1821.6
B (MHz)	690.2	692.3	655.1	662.0	670.3	695.4	693.5	657.9	672.9	675.5	753.4	731.6	1159.4	704.7	711.8
C (MHz)	672.7	672.0	633.1	643.8	651.0	669.3	667.5	636.3	649.0	651.7	709.9	687.3	1369.6	660.7	667.5
μ_a (D)	3.1	3.4	3.6	3.6	3.6	2.5	2.7	2.8	2.8	2.8	2.7	2.9	3.2	3.1	3.1
μ_b (D)	1.6	1.7	1.7	1.7	1.7	1.4	1.5	1.5	1.5	1.5	1.5	1.4	1.2	1.3	1.3
μ_{c} (D)	0.5	0.6	0.6	0.6	0.6	0.3	0.2	0.2	0.2	0.2	0.8	1.1	1.4	1.3	1.3
$\tau C_8 - C_7 - C_1 - C_2$	-112.4	-114.3	-107.2	-104.6	-107.1	90.5	89.0	98.9	94.6	95.2	23.8	18.7	11.5	15.6	15.9
$\Delta E (cm^{-1})$	1168.4	1055.3	1633.5	1302.8	1195.2	1707.1	1712.0	2209.1	1854.5	1761.4	1956.6	1785.2	2313.7	2084.5	1960.3
ΔE_{ZPC} (cm ⁻¹)	1101.2	1157.5	1600.5	1304.5	1181.4	1748.7	1767.2	2185.6	1873.3	1783.6	1969.1	1920.1	2360.2	2134.1	1998.4
ΔG^{406} (cm ⁻¹)	1041.6	1213.9	1587.0	1323.2	1203.2	1821.0	1839.2	2172.8	1895.4	1824.7	1949.6	2023.3	2408.5	2180.3	2060.0

 Table S3. Theoretical spectroscopic parameters of the twelve stable conformers of perillaldehyde.

Perillaldehyde			Eq-	A				Eq-C			Eq-a				
	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ
A (MHz)	2926.2	2950.4	2942.1	2939.5	2947.4	2950.9	2975.2	2964.4	2961.6	2969.9	2866.0	2904.3	2892.2	2883.5	2893.1
B (MHz)	537.1	540.1	531.7	534.2	535.3	547.5	552.0	541.5	543.3	545.5	551.1	560.7	547.0	549.4	551.0
C (MHz)	510.7	512.3	505.4	507.6	508.7	492.0	491.4	487.5	489.3	489.8	495.3	487.1	487.6	489.7	490.4
$\mu_{a}\left(\mathrm{D}\right)$	2.9	3.0	3.3	3.2	3.3	3.0	3.2	3.4	3.4	3.4	2.9	3.0	3.3	3.2	3.2
$\mu_{b}\left(\mathrm{D}\right)$	1.5	1.6	1.7	1.7	1.7	1.7	1.9	1.9	1.9	1.9	1.4	1.5	1.5	1.5	1.5
$\mu_{c}\left(\mathrm{D}\right)$	0.6	0.7	0.6	0.7	0.7	0.4	0.4	0.4	0.4	0.4	0.4	0.1	0.4	0.4	0.4
$\tau C_8 - C_7 - C_1 - C_2$	128.8	131.4	126.7	128.1	127.7	-11.9	-6.9	-13.8	-13.8	-12.2	-95.8	-123.1	-103.1	-102.6	-103.6
$\Delta E (cm^{-1})$	118.6	1.0	0	0	0	307.1	30.0	139.7	137.9	132.0	376.9	153.6	178.5	212.7	187.7
ΔE_{ZPC} (cm ⁻¹)	55.6	0	0	0	0	239.7	70.7	128.1	135.5	117.1	310.6	245.4	153.2	182.8	158.0
$\Delta G^{406} (cm^{-1})$	0	0	0	0	4.8	131.9	165.5	102.1	95.3	73.7	215.1	373.1	83.6	100.3	69.4
	Ax-a				Ax-A							Ax-0	2		
	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ	MP2	M062X	B3LYP	B3LYP-D3	B3LYP-D3BJ
A (MHz)	1882.3	1910.8	2022.0	2017.0	1986.7	1993.5	2022.2	2135.1	2066.7	2062.4	1754.1	1804.3	1939.2	1878.3	1866.3
B (MHz)	725.5	721.1	673.6	683.1	692.8	705.0	700.9	658.6	679.1	683.9	749.5	736.9	684.8	703.4	710.7
C (MHz)	690.7	686.5	647.1	656.0	664.1	689.7	688.1	647.0	667.4	672.0	718.2	700.8	639.9	661.1	670.1
μ_{a} (D)	2.8	2.9	3.3	3.2	3.2	2.4	2.5	2.8	2.7	2.7	2.9	3.1	3.4	3.3	3.3
$\mu_b(\mathrm{D})$	2.0	2.2	2.1	2.3	2.2	2.0	2.2	2.2	2.3	2.3	2.1	2.3	2.4	2.4	2.4
$\mu_{c}\left(\mathrm{D} ight)$	0.7	0.9	1.1	0.9	1.0	1.0	1.0	0.9	0.9	1.0	0.7	0.8	0.9	0.9	0.9
$\tau C_8 - C_7 - C_1 - C_2$	-114.3	-114.2	-107.5	-104.3	-108.1	91.8	91.7	102.1	102.1	95.1	21.6	18.9	8.6	8.6	13.4
$\Delta E (cm^{-1})$	0	0	522.5	223.0	90.5	612.1	598.5	1077.2	741.4	625.5	760.7	707.1	1185.4	974.2	828.1
ΔE_{ZPC} (cm ⁻¹)	0	82.2	567.3	256.3	109.4	647.4	740.1	1129.2	812.1	717.7	842.1	864.5	1272.6	1087.2	941.5
$\Delta G^{406} (cm^{-1})$	60.4	193.1	633.2	303.5	0	754.8	948.1	1202.5	931.2	884.0	924.0	1021.7	1325.8	1207.5	1072.8

Table S	4. Ex	perimental s	pectroscopic	parameters	of the	five of	observed	conformers	of	carvone.
		1		1						

	Eq-A	Eq-C	Eq-a	Ax-a	Ax-C
A ^a (MHz)	2237.2055(11) ^e	2256.91513(93)	2212.7903(13)	1621.8211(18)	1687.7984(26)
B (MHz)	656.27834(29)	672.90566(26)	684.52333(27)	904.92320(51)	878.27624(98)
C (MHz)	579.64159(29)	554.50351(25)	554.73193(25)	780.45872(54)	771.3069(12)
$\Delta_J(kHz)$	0.0131(35)	0.0118(37)	0.0197(39)	0.200(14)	0.203(27)
$\Delta_{JK}(kHz)$	0.268(16)	0.054(15)	-0.086(28)	-0.56(10)	-0.82(11)
Δ_{K} (kHz)	-1.77(16)	-0.96(12)	-	-	-
$\delta_K(kHz)$	1.201(56)	-	-	-	-
$a/b/c^{\mathrm{b}}$	y/y/y	y/y/y	y/y/y	y/y/y	y/y/y
σ^{c} (kHz)	8	7	5	5	4
N^{d}	78	85	45	23	25

^a *A*, *B* and *C* are the rotational constants, $\Delta_{J_{c}} \Delta_{JK_{c}} \Delta_{K_{c}} \delta_{K}$ are the quartic centrifugal distortion constants. ^b *a*, *b*, and *c* are the type of transitions observed.

 $^{c}\sigma$ is the rms deviation of the fit.

 $^{\rm d}N$ is the number of the fitted transitions.

e Standard error in parentheses in units of last digit.

Table 55. Experimental spectroscopic parameters of the five observed comorners of mnon
--

	P		
Eq-A	Eq-C	Eq-a	Ax-a
3058.0149(12) ^e	3053.78717(54)	3040.4812 (26)	2163.1282(13)
717.04957(32)	742.17003(27)	745.64408(39)	935.41576(52)
679.25501(30)	646.69228(28)	643.75616(36)	903.88486(48)
0.0165(48)	0.0222(47)	-	0.208(17)
0.088(28)	-	-	-0.940(65)
-	-	-	-
y/y/y	y/y/y	y/y/n	y/y/y
7	6	4	6
59	53	18	33
	Eq-A 3058.0149(12)° 717.04957(32) 679.25501(30) 0.0165(48) 0.088(28) - y/y/y 7 59	Eq-A Eq-C 3058.0149(12)° 3053.78717(54) 717.04957(32) 742.17003(27) 679.25501(30) 646.69228(28) 0.0165(48) 0.0222(47) 0.088(28) - - - y/y/y 7 6 59	Eq-A Eq-C Eq-a 3058.0149(12)e 3053.78717(54) 3040.4812 (26) 717.04957(32) 742.17003(27) 745.64408(39) 679.25501(30) 646.69228(28) 643.75616(36) 0.0165(48) 0.0222(47) - 0.088(28) - - - - - y/y/y y/y/y y/y/n 7 6 4 59 53 18

^a *A*, *B* and *C* are the rotational constants, $\Delta_J \Delta_K \Delta_{JK}$ are the quartic centrifugal distortion constants. ^b *a*, *b*, and *c* are the type of transitions observed.

 $^{\rm c}\,\sigma$ is the rms deviation of the fit.

d N is the number of the fitted transitions.

^e Standard error in parentheses in units of last digit.

Table S6. Ex	perimental s	spectroscopic	parameters of	of the five	observed	conformers of	f perillaldehy	vde
--------------	--------------	---------------	---------------	-------------	----------	---------------	----------------	-----

I	I I	1		1
	Eq-A	Eq-C	Eq-a	Ax-a
A ^a (MHz)	2932.68531(72) ^e	2954.62015(52)	2880.66517(99)	1919.41562(92)
B (MHz)	536.55638(16)	547.00873(17)	554.09056(34)	710.46341(44)
C (MHz)	510.20051(19)	491.61401(18)	489.85916(30)	678.65905(46)
$\Delta_J(kHz)$	0.0136(18)	0.0110(20)	0.0145(37)	0.1514(95)
$\Delta_{JK}(kHz)$	0.078(16)	-	0.077(22)	-0.996(38)
Δ_{K} (kHz)	-	-	-	2.70(13)
$\delta_J(\text{kHz})$	-	-	-0.00228(65)	-
$a/b/c^{\mathrm{b}}$	y/y/y	y/y/y	y/y/n	y/y/y
σ ^c (kHz)	6	5	7	7
$N^{\rm d}$	76	78	59	53

 ${}^{a}A$, *B* and *C* are the rotational constants, $\Delta_{J_{c}}\Delta_{J_{K}}$, $\Delta_{K_{c}}\delta_{J}$ are the quartic centrifugal distortion constants.

^b a, b, and c are the type of transitions observed.

 $^{c}\sigma$ is the rms deviation of the fit.

 ^{d}N is the number of the fitted transitions.

e Standard error in parentheses in units of last digit.

	1							
J'	<i>K'</i> ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}	¹⁰ 9 / ¹¹
2	1	2	1	1	1	2395.1944	-0.0024	
2	0	2	1	0	1	2469.1175	-0.0021	6
2	1	1	1	1	0	2548.4753	-0.0046	5 1
3	1	3	2	1	2	3591.1234	0.0003	
3	0	3	2	0	2	3696.8987	-0.0029	
3	2	1	2	2	0	3718.6275	0.0188	³
3	1	2	2	1	1	3820 9844	-0.0029	ļ
4	1	4	$\frac{-}{3}$	1	3	4785 1243	-0.0018	/
4	0	4	3	0	3	4916 6788	-0.0031	
4	2	3	3	2	2	4941 5540	0.0044	
4	$\frac{1}{2}$	2	3	$\frac{1}{2}$	1	4968 5390	-0.0039	
4	1	$\frac{1}{3}$	3	1	2	5091 3263	-0.0040	
5	0	5	4	0	4	6126 2000	-0.0029	
5	2	4	4	2	3	6173 5242	-0.0087	
5	2	3	4	$\frac{2}{2}$	2	6226 9257	0.0115	
5	1	1	4	1	2	6358 6399	-0.0035	
6	1	6	5	1	5	7165 4505	0.0003	
6	0	6	5	0	5	7323 8773	-0.0003	
6	2	5	5	2	5 1	7403 2650	0.0103	
6	2	3	5	$\frac{2}{2}$	-	7403.2030	0.0103	
6	2	4	5	2 1	5 1	7621 0315	-0.0074	
0	1	2	1	1	4	2076 1006	-0.0032	
2	1	2	1	0	2	5008 1222	-0.0132	
5	1	3	2	0	2	5096.1252 6196.2499	-0.0031	
4	1	4	5	0	5	0100.3400	-0.0019	
3	1	3	4	0	4	7240.3098	0.0004	
3	0	3	2	1	2	2189.8930	-0.0028	
4	0	4	3	1	3	3515.4607	0.0034	
5	0	5	4	1	4	4830.3273	-0.0066	
6	0	6	5	1	5	6203.7079	-0.0052	
/	0	/	6	1	6	/54/.448/	-0.0072	
1	1	0	0	0	0	2893.4803	-0.00/1	
2	1	1	1	0	1	4206.0427	-0.0048	
3	1	2	2	0	2	5557.9106	-0.0046	
4	1	3	3	0	3	6952.3350	-0.0089	
4	0	4	3	1	2	3055.6650	-0.0033	
5	0	5	4	1	3	4090.5365	-0.0045	
6	0	6	5	1	4	5055./804	0.0032	
/	0	1	6	1	2	5943.0369	0.0035	
7	l	6	6	2	5	4804.0912	0.0116	
8	1	/	/	2	6	6305.521/	-0.0004	
9	1	8	8	2	1	7826.7504	-0.0064	
4	1	3	4	0	4	2035.6623	0.0004	
5	1	4	5	0	5	2268.0987	-0.0037	
6	1	5	6	0	6	2566.1588	-0.0007	
7	1	6	7	0	7	2937.0313	-0.0022	
8	1	7	8	0	8	3385.8184	0.0044	
9	1	8	9	0	9	3914.1060	0.0061	
10	1	9	10	0	10	4519.1745	0.0169	
2	2	0	2	1	1	4745.5070	-0.0088	
3	2	1	3	1	2	4643.1551	0.0179	
4	2	2	4	1	3	4520.3675	0.0177	
6	2	4	6	1	5	4261.5225	-0.0047	
7	2	5	7	1	6	4153.8325	-0.0003	
8	2	6	8	1	7	4080.3177	-0.0019	

Table S7.I. Measured frequencies and residuals (in MHz) for the rotational transitions of the conformer Eq-A of carvone.

9	2	7	9	1	8	4054.7047	-0.0034
10	2	8	10	1	9	4089.0036	-0.0004
2	2	1	2	1	2	4972.7302	0.0096
3	2	2	3	1	3	5089.3551	0.0056
4	2	3	4	1	4	5245.7837	0.0107
5	2	4	5	1	5	5442.6107	0.0054
6	2	5	6	1	6	5680.3920	-0.0178
7	2	6	7	1	7	5959.5656	-0.0172
8	2	7	8	1	8	6280.2230	-0.0132
9	2	8	9	1	9	6642.0849	-0.0054
10	2	9	10	1	10	7044.3904	-0.0007
2	2	1	1	1	0	7291.2880	0.0121
2	2	0	1	1	0	7293.9908	-0.0050
2	2	0	1	1	1	7370.6493	0.0120
5	3	3	4	3	2	6188.3108	0.0120
5	3	2	4	3	1	6189.5676	0.0038
6	3	4	5	3	3	7428.8055	0.0123
6	3	3	5	3	2	7432.1646	0.0087
6	2	5	6	1	5	4075.9785	-0.0088
7	2	6	7	1	6	3826.1942	-0.0033
8	2	7	8	1	7	3548.6647	0.0086
7	3	4	7	2	5	7870.6640	-0.0098
8	3	5	8	2	6	7740.1137	-0.0051
9	3	6	9	2	7	7572.9936	0.0141

Table S7.II. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_1$ isotopologue of conformer Eq-A of carvone.

J'	K'.1	<i>K</i> ' ₊₁	<i>J</i> "	<i>K</i> ".1	<i>K</i> " ₊₁	V _{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2390.5329	-0.0043
2	0	2	1	0	1	2465.6499	-0.0089
2	1	1	1	1	0	2546.4816	0.0024
3	1	3	2	1	2	3584.0568	0.0025
3	0	3	2	0	2	3691.3894	0.0029
3	1	2	2	1	1	3817.9036	0.0015
4	1	4	3	1	3	4775.5572	-0.0024
4	0	4	3	0	3	4908.7393	0.0010
4	1	3	3	1	2	5087.0539	0.0013
5	1	5	4	1	4	5964.5233	-0.0055
5	0	5	4	0	4	6115.3787	0.0022
5	1	4	4	1	3	6353.0225	0.0043
6	1	6	5	1	5	7150.5569	0.0020
6	0	6	5	0	5	7309.7064	0.0026
6	1	5	5	1	4	7614.7525	0.0013
2	1	2	1	0	1	3950.6142	-0.0162
3	1	3	2	0	2	5069.0267	0.0008
4	1	4	3	0	3	6153.2015	0.0025
5	1	5	4	0	4	7208.9925	0.0030
3	0	3	2	1	2	2206.4055	-0.0094
5	0	5	4	1	4	4870.9154	-0.0004
6	0	6	5	1	5	6216.0935	0.0027
7	0	7	6	1	6	7556.8175	-0.0029

J'	<i>K</i> ' ₋₁	K'_{+1}	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2387.0431	-0.0075
2	0	2	1	0	1	2462.2095	-0.0100
2	1	1	1	1	0	2543.0958	-0.0069
3	1	3	2	1	2	3578.8171	-0.0026
3	1	2	2	1	1	3812.8315	-0.0007
4	1	4	3	1	3	4768.5715	-0.0002
4	0	4	3	0	3	4901.7974	-0.0015
4	1	3	3	1	2	5080.2868	0.0037
5	1	5	4	1	4	5955.7812	-0.0001
5	0	5	4	0	4	6106.6506	0.0013
5	1	4	4	1	3	6344.5425	0.0031
6	1	6	5	1	5	7140.0410	0.0000
6	0	6	5	0	5	7299.1608	-0.0016
6	1	5	5	1	4	7604.5540	0.0036
2	1	2	1	0	1	3945.0022	-0.0080
3	1	3	2	0	2	5061.6097	-0.0007
4	1	4	3	0	3	6143.9815	0.0076
5	1	5	4	0	4	7197.9575	0.0011

Table S7.III. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_2$ isotopologue of conformer **Eq-A** of **carvone**.

Table S7.IV. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_3$ isotopologue of conformer **Eq-A** of **carvone**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2384.2997	-0.0055
2	1	1	1	1	0	2536.5740	0.0150
3	1	3	2	1	2	3574.8088	0.0007
3	0	3	2	0	2	3679.9390	-0.0003
3	1	2	2	1	1	3803.1290	-0.0007
4	1	4	3	1	3	4763.4145	0.0013
4	0	4	3	0	3	4894.2318	-0.0014
4	1	3	3	1	2	5067.5675	0.0014
5	1	5	4	1	4	5949.6255	0.0048
5	0	5	4	0	4	6098.4012	0.0023
5	1	4	4	1	3	6329.0163	0.0003
6	1	6	5	1	5	7133.0335	-0.0044
6	0	6	5	0	5	7290.8583	-0.0010
6	1	5	5	1	4	7586.5074	0.0026
2	1	2	1	0	1	3965.8050	-0.0102
3	1	3	2	0	2	5082.8750	0.0019
4	1	4	3	0	3	6166.3477	0.0008
5	1	5	4	0	4	7221.7362	0.0018
4	0	4	3	1	3	3491.2982	-0.0012
5	0	5	4	1	4	4826.2854	0.0002
6	0	6	5	1	5	6167.5225	-0.0012
7	0	7	6	1	6	7505.5607	-0.0043

Table S7.V. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_4$ isotopologue of conformer **Eq-A** of **carvone**.

J'	<i>K</i> '-1	<i>K</i> ' ₊₁	J"	<i>K"</i> .1	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2388.4188	-0.0026
2	0	2	1	0	1	2462.4790	0.0110
2	1	1	1	1	0	2541.9987	0.0069

3	1	3	2	1	2	3580.9489	0.0010
3	0	3	2	0	2	3686.8748	-0.0002
4	1	4	3	1	3	4771.5410	0.0032
4	0	4	3	0	3	4903.2251	0.0014
4	1	3	3	1	2	5078.3144	0.0024
5	0	5	4	0	4	6109.2485	0.0038
5	1	4	4	1	3	6342.3332	0.0052
6	1	6	5	1	5	7144.9787	-0.0070
6	0	6	5	0	5	7303.3451	-0.0073
6	1	5	5	1	4	7602.2930	0.0016
2	1	2	1	0	1	3963.5539	-0.0163
3	1	3	2	0	2	5082.0504	0.0003
4	1	4	3	0	3	6166.7167	0.0038
5	1	5	4	0	4	7223.1780	0.0057
4	0	4	3	1	3	3508.0470	-0.0016
5	0	5	4	1	4	4845.7527	-0.0027
7	0	7	6	1	6	7529.4788	-0.0031

Table S7.VI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_5$ isotopologue of conformer **Eq-A** of **carvone**.

J'	<i>K</i> '-1	<i>K</i> ' ₊₁	J"	<i>K</i> ". ₋₁	<i>K</i> " ₊₁	ν_{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	3587.9153	-0.0022
3	0	3	2	0	2	3694.4163	-0.0027
3	1	2	2	1	1	3819.6484	-0.0011
4	1	4	3	1	3	4780.7890	0.0051
4	0	4	3	0	3	4913.0860	-0.0016
5	1	5	4	1	4	5971.1667	-0.0033
5	0	5	4	0	4	6121.2761	-0.0018
5	1	4	4	1	3	6356.1866	0.0055
6	0	6	5	0	5	7317.3987	-0.0004
6	1	5	5	1	4	7618.7783	0.0059
2	1	2	1	0	1	3962.9275	-0.0072
3	1	3	2	0	2	5083.2845	0.0008
4	1	4	3	0	3	6169.6498	0.0012
5	1	5	4	0	4	7227.7337	0.0026
4	0	4	3	1	3	3524.2263	0.0034
6	0	6	5	1	5	6210.9461	0.0001
7	0	7	6	1	6	7553.2366	-0.0073

Table S7.VII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_6$ isotopologue of conformer **Eq-A** of **carvone**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	ν_{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	3587.5040	0.0034
3	0	3	2	0	2	3692.9477	-0.0147
3	1	2	2	1	1	3816.6204	0.0006
4	1	4	3	1	3	4780.3175	0.0031
4	0	4	3	0	3	4911.5026	-0.0025
4	1	3	3	1	2	5085.5275	-0.0001
5	1	5	4	1	4	5970.7120	-0.0015
5	0	5	4	0	4	6119.8468	-0.0009
5	1	4	4	1	3	6351.4332	0.0083
6	1	6	5	1	5	7158.2987	-0.0048
6	0	6	5	0	5	7316.4080	-0.0011
6	1	5	5	1	4	7613.3305	0.0018

2	1	2	1	0	1	3973.2141	-0.0112
3	1	3	2	0	2	5094.2634	0.0034
4	1	4	3	0	3	6181.6155	0.0035
5	1	5	4	0	4	7240.8250	0.0046

Table S7.VIII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_7$ isotopologue of conformer Eq-A of carvone.

J'	<i>K</i> '-1	K'_{+1}	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2361.8640	0.0017
2	0	2	1	0	1	2434.0405	-0.0093
3	1	3	2	1	2	3541.2066	0.0009
3	0	3	2	0	2	3644.6371	-0.0038
3	1	2	2	1	1	3765.4479	-0.0051
4	1	4	3	1	3	4718.7215	0.0007
4	0	4	3	0	3	4847.6290	-0.0009
4	1	3	3	1	2	5017.4581	0.0008
5	1	5	4	1	4	5893.9235	-0.0001
5	0	5	4	0	4	6040.8492	-0.0025
5	1	4	4	1	3	6266.5966	0.0026
6	1	6	5	1	5	7066.4350	0.0038
6	0	6	5	0	5	7222.7515	0.0010
6	1	5	5	1	4	7511.9370	0.0055
2	1	2	1	0	1	3948.2597	0.0005
3	1	3	2	0	2	5055.4154	0.0002
4	1	4	3	0	3	6129.4922	-0.0028
5	1	5	4	0	4	7175.7890	0.0002
4	0	4	3	1	3	3436.8581	0.0024
5	0	5	4	1	4	4758.9842	-0.0024
6	0	6	5	1	5	6087.8124	-0.0011
7	0	7	6	1	6	7414.1270	-0.0011

Table S7.IX. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{9}$ isotopologue of conformer **Eq-A** of **carvone**.

J'	<i>K</i> ' ₋₁	K'_{+1}	J"	K''_{-1}	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2378.8149	0.0178
2	0	2	1	0	1	2451.7230	0.0083
2	1	1	1	1	0	2529.9140	0.0108
3	1	3	2	1	2	3566.5890	0.0148
3	0	3	2	0	2	3671.0095	0.0084
3	1	2	2	1	1	3793.1785	0.0027
4	1	4	3	1	3	4752.5117	0.0266
4	0	4	3	0	3	4882.5377	0.0118
4	1	3	3	1	2	5054.3545	0.0023
5	1	5	4	1	4	5936.0634	0.0262
5	0	5	4	0	4	6084.1055	0.0190
5	1	4	4	1	3	6312.6040	0.0074
6	1	6	5	1	5	7116.8872	0.0451
6	0	6	5	0	5	7274.1370	0.0229
6	1	5	5	1	4	7566.9631	0.0088
3	1	3	2	0	2	5079.2287	0.0172
4	1	4	3	0	3	6160.7250	0.0295
5	1	5	4	0	4	7214.2539	0.0471
4	0	4	3	1	3	3474.3175	0.0019

5	0	5	4	1	4	4805.9169	-0.0001
6	0	6	5	1	5	6143.9815	-0.0123
7	0	7	6	1	6	7479.2179	0.0159

J'	<i>K</i> ' ₋₁	K'_{+1}	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2369.3369	0.0074
2	0	2	1	0	1	2440.6236	0.0049
3	1	3	2	1	2	3552.4359	0.0016
3	0	3	2	0	2	3654.6049	-0.0024
3	1	2	2	1	1	3773.8530	0.0012
4	1	4	3	1	3	4733.7390	-0.0033
4	0	4	3	0	3	4861.1257	-0.0004
4	1	3	3	1	2	5028.7125	0.0008
5	1	5	4	1	4	5912.7710	-0.0065
5	0	5	4	0	4	6058.0411	-0.0031
5	1	4	4	1	3	6280.7619	0.0060
6	1	6	5	1	5	7089.1654	0.0032
6	0	6	5	0	5	7243.8180	-0.0061
6	1	5	5	1	4	7529.0707	0.0002
2	1	2	1	0	1	3943.8147	-0.0147
3	1	3	2	0	2	5055.6491	0.0041
4	1	4	3	0	3	6134.7848	0.0048
5	1	5	4	0	4	7186.4349	0.0035
4	0	4	3	1	3	3460.0842	-0.0042
5	0	5	4	1	4	4784.3890	-0.0013
7	0	7	6	1	6	7444.1580	0.0032

Table S7.X. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{10}$ isotopologue of conformer **Eq-A** of **carvone**.

Table S7.XI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{11}$ isotopologue of conformer **Eq-A** of **carvone**.

J'	<i>K</i> '-1	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2364.7476	0.0061
2	0	2	1	0	1	2435.7190	-0.0028
3	1	3	2	1	2	3545.5715	0.0040
3	0	3	2	0	2	3647.3220	-0.0025
3	1	2	2	1	1	3765.9835	-0.0006
4	1	4	3	1	3	4724.6150	0.0009
4	0	4	3	0	3	4851.5275	-0.0023
4	1	3	3	1	2	5018.2618	0.0091
5	1	5	4	1	4	5901.4106	0.0016
5	0	5	4	0	4	6046.2215	-0.0025
5	1	4	4	1	3	6267.7380	0.0030
6	1	6	5	1	5	7075.5777	0.0007
6	0	6	5	0	5	7229.8769	0.0016
6	1	5	5	1	4	7513.5272	-0.0005
2	1	2	1	0	1	3940.8563	0.0014
3	1	3	2	0	2	5050.6949	-0.0057
4	1	4	3	0	3	6127.9887	-0.0016
5	1	5	4	0	4	7177.8694	0.0000
4	0	4	3	1	3	3448.1619	0.0082
5	0	5	4	1	4	4769.7488	-0.0147

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}	
2	1	2	1	1	1	2336.4181	0.0025	
2	0	2	1	0	1	2448.4244	-0.0012	
2	1	1	1	1	0	2573.2180	-0.0019	6
3	1	3	2	1	2	3500.7306	0.0007	5
3	0	3	2	0	2	3656.7798	0.0000	4
3	1	2	2	1	1	3855.7196	-0.0007	
4	1	4	3	1	3	4660.6681	0.0001	
4	0	4	3	0	3	4846.8028	-0.0004	
4	1	3	3	1	2	5132.9820	-0.0006	
5	1	5	4	1	4	5815.2460	0.0011	
5	0	5	4	0	4	6014.4640	-0.0018	
5	1	4	4	1	3	6402.7430	-0.0015	
6	1	6	5	1	5	6963.8313	-0.0059	
6	0	6	5	0	5	7158.7201	-0.0026	
6	1	5	5	1	4	7662.3038	-0.0033	
3	2	2	2	2	1	3682.2244	-0.0005	
4	2	3	3	2	2	4904.6589	0.0024	
4	2	2	3	2	1	4967.4798	-0.0012	
5	2	4	4	2	3	6122.8382	0.0020	
5	2	3	4	2	2	6245.3574	-0.0045	
6	2	5	5	2	4	7335.7409	0.0053	
6	2	4	5	2	3	7541.2332	-0.0072	
4	3	2	3	3	1	4921.7860	-0.0047	
4	3	1	3	3	0	4923.0740	-0.0108	
5	3	3	4	3	2	6156.8348	0.0111	
5	3	2	4	3	1	6161.3420	0.0073	
6	3	4	5	3	3	7393.8431	0.0055	
6	3	3	5	3	2	7405.7800	0.0009	
3	0	3	2	1	2	2184.7837	0.0043	
4	0	4	3	1	3	3530.8525	-0.0002	
5	0	5	4	1	4	4884.6502	-0.0003	
6	0	6	5	1	5	6228.1255	-0.0028	
7	0	7	6	1	6	7546.5576	-0.0072	
1	1	1	0	0	0	2811.4277	0.0083	
2	1	2	1	0	1	3920.4175	-0.0084	
3	1	3	2	0	2	4972.7293	-0.0010	
5	1	5	4	0	4	6945.0575	-0.0027	
6	1	6	5	0	5	7894.4315	-0.0001	
1	1	0	0	0	0	2929.8309	0.0093	
2	1	1	1	0	1	4275.6316	-0.0008	
3	1	2	2	0	2	5682.9288	0.0017	
4	1	3	3	0	3	7159.1297	-0.0002	
4	0	4	3	1	2	2820.6540	-0.0018	
5	0	5	4	1	3	3702.1322	-0.0068	
6	0	6	5	1	4	4458.1149	-0.0023	
3	1	2	3	0	3	2026.1487	0.0014	
4	1	3	4	0	4	2312.3288	0.0021	
5	1	4	5	0	5	2700.6074	0.0019	
6	1	5	6	0	6	3204.1925	0.0026	
7	1	6	7	0	7	3830.3949	0.0030	
8	1	7	8	0	8	4577.2121	0.0007	
9	1	8	9	0	9	5432.2950	-0.0027	
11	1	10	11	0	11	7377.8196	0.0005	
5	1	4	4	2	3	2052.5315	0.0074	

Table S8.I. Measured frequencies and residuals (in MHz) for the rotational transitions of the conformer Eq-C of carvone.

6	1	5	5	2	4	3591.9943	-0.0008
7	1	6	6	2	5	5164.7458	0.0106
8	1	7	7	2	6	6759.9744	-0.0007
8	2	7	8	1	7	2981.8939	0.0050
7	2	6	7	1	6	3377.6325	-0.0087
6	2	5	6	1	5	3743.7413	0.0007
5	2	4	5	1	4	4070.3096	-0.0024
4	2	3	4	1	3	4350.1980	-0.0224
2	2	1	2	1	2	5107.2569	0.0087
3	2	2	3	1	3	5288.7476	0.0043
4	2	3	4	1	4	5532.7202	-0.0116
5	2	4	5	1	5	5840.3189	-0.0042
6	2	5	6	1	6	6212.2125	-0.0090
7	2	6	7	1	7	6648.3812	-0.0068
8	2	7	8	1	8	7147.7469	-0.0062
9	2	8	9	1	9	7708.0361	0.0029
7	2	5	7	1	6	4109.1822	-0.0054
6	2	4	6	1	5	4166.4337	-0.0007
5	2	3	5	1	4	4287.5155	0.0144
4	2	2	4	1	3	4444.9091	0.0254
3	2	1	3	1	2	4610.4064	0.0211
5	3	3	4	3	2	6156.8322	0.0085
5	3	2	4	3	1	6161.3363	0.0016
6	3	4	5	3	3	7393.8348	-0.0028
6	3	3	5	3	2	7405.7840	0.0049
6	2	5	6	1	5	3743.7373	-0.0033
7	2	6	7	1	6	3377.6360	-0.0052
8	2	7	8	1	7	2981.8939	0.0050
6	3	3	6	2	4	7924.4962	-0.0006
7	3	4	7	2	5	7732.0749	-0.0002
9	3	6	9	2	7	7204.4885	0.0042

Table S8.II. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_1$ isotopologue of conformer **Eq-C** of **carvone**.

1501000002			i cai vone.				
J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2445.1372	-0.0080
2	1	1	1	1	0	2571.0075	0.0043
3	1	3	2	1	2	3494.6362	0.0062
3	0	3	2	0	2	3651.4347	-0.0000
3	1	2	2	1	1	3852.2830	0.0015
4	1	4	3	1	3	4652.3563	0.0010
4	0	4	3	0	3	4838.9244	-0.0055
4	1	3	3	1	2	5128.1747	0.0038
5	1	5	4	1	4	5804.5979	0.0040
5	0	5	4	0	4	6003.5751	-0.0008
5	1	4	4	1	3	6396.3387	0.0043
6	1	6	5	1	5	6950.7197	-0.0025
6	0	6	5	0	5	7144.4519	-0.0090
6	1	5	5	1	4	7653.9803	0.0015
2	1	2	1	0	1	3896.7306	-0.0153
3	1	3	2	0	2	4946.2363	0.0057
4	1	4	3	0	3	5947.1556	0.0045
5	1	5	4	0	4	6912.8203	0.0052
4	0	4	3	1	3	3544.1347	0.0006
6	0	6	5	1	5	6235.2240	0.0022

/ 0 / 0 1 0 /349.04	4/0 -0.0053
---------------------	-------------

J'	K'-1	<i>K</i> ' ₊₁	J"	<i>K</i> "-1	<i>K</i> " ₊₁	ν_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2329.1298	-0.0145
2	1	1	1	1	0	2568.0237	0.0051
3	0	3	2	0	2	3646.6119	-0.0062
3	1	2	2	1	1	3847.7865	0.0024
4	1	4	3	1	3	4645.7473	-0.0037
4	0	4	3	0	3	4832.3706	-0.0031
4	1	3	3	1	2	5122.1397	0.0063
5	1	5	4	1	4	5796.2908	-0.0011
5	0	5	4	0	4	5995.1930	-0.0008
5	1	4	4	1	3	6388.7169	0.0008
6	1	6	5	1	5	6940.7087	0.0082
6	0	6	5	0	5	7134.1815	-0.0106
6	1	5	5	1	4	7644.7207	-0.0010
2	1	2	1	0	1	3889.6336	-0.0044
3	1	3	2	0	2	4937.3531	-0.0008
4	1	4	3	0	3	5936.4899	0.0030
5	1	5	4	0	4	6900.4155	0.0103
4	0	4	3	1	3	3541.6422	0.0045
5	0	5	4	1	4	4891.0904	0.0098
6	0	6	5	1	5	6228.9780	-0.0028
7	0	7	6	1	6	7540.6605	-0.0063

Table S8.III. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_2$ isotopologue of conformer **Eq-C** of **carvone**.

Table S8.IV. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_3$ isotopologue of conformer **Eq-C** of **carvone**.

J'	K'-1	<i>K</i> ' ₊₁	J"	<i>K</i> ".1	<i>K</i> " ₊₁	ν_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2437.2595	-0.0059
2	1	1	1	1	0	2561.1170	0.0081
3	1	3	2	1	2	3485.1969	0.0008
3	0	3	2	0	2	3640.2644	-0.0008
3	1	2	2	1	1	3837.6150	0.0014
4	1	4	3	1	3	4640.0450	-0.0079
4	0	4	3	0	3	4825.1860	0.0005
4	1	3	3	1	2	5108.9569	-0.0015
5	0	5	4	0	4	5988.0260	0.0015
5	1	4	4	1	3	6372.9161	-0.0021
6	1	6	5	1	5	6933.2666	-0.0057
6	0	6	5	0	5	7127.6946	-0.0010
6	1	5	5	1	4	7626.8430	0.0027
2	1	2	1	0	1	3910.2741	-0.0051
3	1	3	2	0	2	4958.2152	0.0052
4	1	4	3	0	3	5958.0023	0.0046
5	1	5	4	0	4	6922.4282	-0.0024
6	1	6	5	0	5	7867.6837	0.0053
4	0	4	3	1	3	3507.2518	0.0111
5	0	5	4	1	4	4855.2163	0.0040
6	0	6	5	1	5	6193.2815	-0.0080
7	0	7	6	1	6	7506.8062	-0.0008

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2441.5600	-0.0098
3	1	3	2	1	2	3490.6795	0.0034
3	0	3	2	0	2	3646.4938	0.0090
3	1	2	2	1	1	3845.2130	-0.0022
4	1	4	3	1	3	4647.2623	0.0037
4	0	4	3	0	3	4833.0640	0.0053
4	1	3	3	1	2	5118.9712	0.0025
5	1	5	4	1	4	5798.4835	0.0056
5	0	5	4	0	4	5997.2682	0.0013
5	1	4	4	1	3	6385.2110	-0.0031
6	1	6	5	1	5	6943.7074	-0.0046
6	0	6	5	0	5	7138.0816	0.0015
6	1	5	5	1	4	7641.2541	0.0060
3	1	3	2	0	2	4957.5019	-0.0111
4	1	4	3	0	3	5958.2775	-0.0092
5	1	5	4	0	4	6923.7056	-0.0004
6	1	6	5	0	5	7870.1544	0.0033
3	0	3	2	1	2	2179.6437	-0.0042
4	0	4	3	1	3	3522.0188	-0.0117
5	0	5	4	1	4	4872.0285	-0.0103
6	0	6	5	1	5	6211.6440	0.0031
7	0	7	6	1	6	7526.1563	0.0073

Table S8.V. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_4$ isotopologue of conformer **Eq-C** of **carvone**.

Table S8.VI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_5$ isotopologue of conformer **Eq-C** of **carvone**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	ν_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2334.2500	-0.0080
2	0	2	1	0	1	2446.8449	0.0010
2	1	1	1	1	0	2572.4595	-0.0018
3	1	3	2	1	2	3497.4238	0.0042
3	0	3	2	0	2	3654.1065	0.0024
3	1	2	2	1	1	3854.5035	0.0022
4	0	4	3	0	3	4842.7015	-0.0001
4	1	3	3	1	2	5131.1989	0.0030
5	1	5	4	1	4	5809.3861	0.0054
5	0	5	4	0	4	6008.5937	0.0077
5	1	4	4	1	3	6400.2290	-0.0009
6	1	6	5	1	5	6956.5615	0.0013
6	0	6	5	0	5	7150.7961	-0.0059
6	1	5	5	1	4	7658.8430	0.0053
2	1	2	1	0	1	3905.8065	-0.0152
3	1	3	2	0	2	4956.3999	0.0026
4	1	4	3	0	3	5958.4250	0.0059
6	1	6	5	0	5	7873.0681	-0.0042
5	0	5	4	1	4	4892.8618	-0.0067
6	0	6	5	1	5	6234.2816	-0.0082
7	0	7	6	1	6	7549.9679	0.0030

J'	<i>K</i> ' ₋₁	K'_{+1}	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2445.8776	-0.0003
3	1	3	2	1	2	3497.3195	-0.0081
3	0	3	2	0	2	3653.0366	-0.0007
3	1	2	2	1	1	3851.4253	0.0015
4	0	4	3	0	3	4841.9565	0.0028
4	1	3	3	1	2	5127.2980	0.0028
5	1	5	4	1	4	5809.6625	-0.0039
5	0	5	4	0	4	6008.5932	-0.0138
5	1	4	4	1	3	6395.7105	0.0038
6	0	6	5	0	5	7151.9325	-0.0049
6	1	5	5	1	4	7653.9803	0.0048
2	1	2	1	0	1	3918.2612	-0.0064
3	1	3	2	0	2	4969.7116	-0.0057
4	1	4	3	0	3	5972.8495	0.0042
5	1	5	4	0	4	6940.5785	0.0205
6	1	6	5	0	5	7889.1563	-0.0030
4	0	4	3	1	3	3525.2894	0.0156
6	0	6	5	1	5	6219.9837	-0.0027
7	0	7	6	1	6	7537.3776	-0.0068

Table S8.VII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_6$ isotopologue of conformer **Eq-C** of **carvone**.

Table S8.VIII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_7$ isotopologue of conformer **Eq-C** of **carvone**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	1	1	1	1	0	2535.6416	0.0007
3	1	3	2	1	2	3453.2275	-0.0011
3	0	3	2	0	2	3606.0120	0.0012
3	1	2	2	1	1	3799.5630	0.0036
4	1	4	3	1	3	4597.6693	0.0008
4	0	4	3	0	3	4780.5075	0.0005
4	1	3	3	1	2	5058.5145	0.0026
5	1	5	4	1	4	5736.9905	0.0006
5	0	5	4	0	4	5933.6121	-0.0009
5	1	4	4	1	3	6310.3695	0.0040
6	1	6	5	1	5	6870.5793	-0.0002
6	0	6	5	0	5	7064.1310	-0.0048
6	1	5	5	1	4	7552.5850	0.0032
2	1	2	1	0	1	3892.8486	-0.0160
3	1	3	2	0	2	4932.0388	0.0025
4	1	4	3	0	3	5923.6989	0.0049
5	1	5	4	0	4	6880.1826	0.0056
6	1	6	5	0	5	7817.1422	-0.0013
4	0	4	3	1	3	3454.4851	0.0037
5	0	5	4	1	4	4790.4220	-0.0039
6	0	6	5	1	5	6117.5709	-0.0009
7	0	7	6	1	6	7421.3783	-0.0058

Table S8.IX. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{9}$ isotopologue of conformer **Eq-C** of **carvone**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}

2	0	2	1	0	1	2431.3215	-0.0016
2	1	1	1	1	0	2554.2700	-0.0084
3	1	3	2	1	2	3477.3706	-0.0041
3	0	3	2	0	2	3631.6038	0.0057
3	1	2	2	1	1	3827.4380	0.0048
4	1	4	3	1	3	4629.7248	-0.0046
4	0	4	3	0	3	4814.0669	0.0004
4	1	3	3	1	2	5095.5181	0.0039
5	1	5	4	1	4	5776.8662	-0.0020
5	0	5	4	0	4	5974.7535	0.0005
5	1	4	4	1	3	6356.3431	0.0054
6	0	6	5	0	5	7112.5107	-0.0053
6	1	5	5	1	4	7607.3070	0.0046
1	1	1	0	0	0	2807.6693	0.0007
2	1	2	1	0	1	3909.6556	-0.0196
3	1	3	2	0	2	4955.7219	-0.0049
4	1	4	3	0	3	5953.8611	0.0030
5	1	5	4	0	4	6916.6705	0.0107
6	1	6	5	0	5	7860.0798	0.0001
4	0	4	3	1	3	3489.9222	-0.0156
5	0	5	4	1	4	4834.9647	0.0033
6	0	6	5	1	5	6170.6063	-0.0028
7	0	7	6	1	6	7482.2570	0.0050

Table S8.X. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{10}$ isotopologue of conformer **Eq-C** of **carvone**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	1	1	1	1	0	2535.9555	0.0070
3	1	3	2	1	2	3454.2785	0.0042
3	0	3	2	0	2	3606.7488	0.0001
3	1	2	2	1	1	3800.0190	0.0013
4	1	4	3	1	3	4599.0575	-0.0015
4	0	4	3	0	3	4781.4735	-0.0016
4	1	3	3	1	2	5059.1179	0.0015
5	1	5	4	1	4	5738.7260	0.0021
5	0	5	4	0	4	5934.8095	0.0007
5	1	4	4	1	3	6311.1140	0.0055
6	1	6	5	1	5	6872.6599	0.0030
6	0	6	5	0	5	7065.5700	-0.0040
6	1	5	5	1	4	7553.4522	0.0007
2	1	2	1	0	1	3886.8950	-0.0127
3	1	3	2	0	2	4926.6256	-0.0007
4	1	4	3	0	3	5918.9360	-0.0006
5	1	5	4	0	4	6876.1907	0.0053
6	1	6	5	0	5	7814.0326	-0.0009
4	0	4	3	1	3	3461.5869	-0.0106
5	0	5	4	1	4	4797.3509	0.0037
7	0	7	6	1	6	7427.6477	-0.0045

 Table S8.XI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{11}$ isotopologue of conformer Eq-C of carvone.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K"</i> -1	<i>K</i> " ₊₁	ν_{obs}	v_{obs} - v_{calc}

2	0	2	1	0	1	2420.8371	0.0033
2	1	1	1	1	0	2543.5240	0.0069
3	1	3	2	1	2	3462.1097	0.0039
3	0	3	2	0	2	3615.8062	-0.0007
4	1	4	3	1	3	4609.3530	0.0051
4	0	4	3	0	3	4792.9124	-0.0030
4	1	3	3	1	2	5073.9377	0.0000
5	1	5	4	1	4	5751.3581	-0.0021
5	0	5	4	0	4	5948.1931	-0.0011
5	1	4	4	1	3	6329.3084	0.0004
6	1	6	5	1	5	6887.5275	0.0001
6	0	6	5	0	5	7080.5435	-0.0032
6	1	5	5	1	4	7574.7681	-0.0004
2	1	2	1	0	1	3885.0685	-0.0071
3	1	3	2	0	2	4926.3482	0.0006
4	1	4	3	0	3	5919.8938	0.0052
5	1	5	4	0	4	6878.3344	0.0009
6	1	6	5	0	5	7817.6644	-0.0023
4	0	4	3	1	3	3482.3712	-0.0034
5	0	5	4	1	4	4821.2203	-0.0006
6	0	6	5	1	5	6150.4045	-0.0029
7	0	7	6	1	6	7455.3882	0.0043

	***		T · · ·	***	***		
J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	<i>J</i> "	<i>K</i> " ₋₁	<i>K</i> " ₊₁	V _{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2348.7212	0.0024
2	0	2	1	0	1	2470.5875	-0.0019
2	1	1	1	1	0	2608.2962	-0.0054
3	1	3	2	1	2	3518.2694	0.0001
3	0	3	2	0	2	3686.2744	-0.0017
3	1	2	2	1	1	3907.3398	-0.0009
4	1	4	3	1	3	4682.4636	0.0013
4	0	4	3	0	3	4879.5297	0.0011
4	1	3	3	1	2	5199.8141	-0.0015
5	1	5	4	1	4	5840.1770	0.0078
5	0	5	4	0	4	6046.0549	-0.0004
5	1	4	4	1	3	6482.8140	-0.0015
6	1	6	5	1	5	6990.7544	0.0026
6	0	6	5	0	5	7185.8556	-0.0005
6	1	5	5	1	4	7752.8263	-0.0012
3	2	2	2	2	1	3717.7662	0.0005
3	2	1	2	2	0	3749.2462	-0.0071
4	2	3	3	2	2	4950.8535	0.0008
4	2	2	3	2	1	5028.3425	0.0120
5	2	4	4	2	3	6178.6766	0.0022
5	2	3	4	2	2	6328.8014	-0.0075
6	2	5	5	2	4	7399.9696	-0.0001
6	2	4	5	2	3	7649.2744	-0.0097
3	0	3	2	1	2	2279.8787	-0.0007
4	0	4	3	1	3	3641.1379	-0.0008
5	0	5	4	1	4	5004.7346	0.0029
6	0	6	5	1	5	6350.4197	0.0012
7	0	7	6	1	6	7663.4077	0.0009
1	1	1	0	0	0	2767.5143	-0.0081
2	1	2	1	0	1	3876.9769	-0.0091
3	1	3	2	0	2	4924.6643	-0.0016
4	1	4	3	0	3	5920.8519	-0.0003
5	1	5	4	0	4	6881.4938	0.0010
6	1	6	5	0	5	7826.1894	0.0001
1	1	0	0	0	0	2897.3285	0.0147
2	1	1	1	0	1	4266.3538	-0.0064
4	1	3	3	0	3	7216.6567	0.0056
3	1	2	3	0	3	2016.8365	0.0011
4	1	3	4	0	4	2337.1250	0.0025
5	1	4	5	0	5	2773.8863	0.003
6	1	5	6	0	6	3340.8529	-0.0013
4	3	1	3	3	0	4973.8141	0.0081
5	3	3	4	3	2	6220.4511	-0.0049
6	3	4	5	3	3	7471.0759	-0.0024
6	3	3	5	3	2	7487 7525	0.0037

Table S9.I. Measured frequencies and residuals (in MHz) for the rotational transitions of the conformer **Eq-a** of **carvone**.

J'	K'1	K'_{+1}	J"	<i>K"</i> ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	3246.2992	0.0040
2	0	2	1	0	1	3355.9144	-0.0016
2	1	1	1	1	0	3495.2259	0.0017
3	0	3	2	0	2	4998.1064	-0.0021
3	1	3	2	1	2	4860.6472	-0.0020
3	1	2	2	1	1	5232.9293	0.0022
4	0	4	3	0	3	6604.2398	-0.0002
4	1	4	3	1	3	6465.9277	0.0017
4	1	3	3	1	2	6957.1491	-0.0044
3	2	2	2	2	1	5056.1469	0.0092
3	2	1	2	2	0	5114.1374	-0.0160
4	2	3	3	2	2	6729.9172	0.0065
4	2	2	3	2	1	6867.0760	-0.0018
1	1	1	0	0	0	2402.2810	0.0008
2	1	2	1	0	1	3963.1924	-0.0019
3	1	3	2	0	2	5467.9268	-0.0007
4	1	4	3	0	3	6935.7436	-0.0015
2	0	2	1	1	1	2639.0200	0.0031
3	0	3	2	1	2	4390.8300	-0.0002
4	0	4	3	1	3	6134.4203	-0.0006
5	0	5	4	1	4	7846.3356	0.0011
2	1	1	1	0	1	4336.5898	0.0021
3	1	2	2	0	2	6213.6018	0.0030

Table S10.I. Measured frequencies and residuals (in MHz) for the rotational transitions of the conformer Ax-a of carvone.

Table S11.I. Measured frequencies and residuals (in MHz) for the rotational transitions of the conformer Ax-C of carvone.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	V _{obs}	v_{obs} - v_{calc}
2	1	1	1	1	0	3406.1321	-0.0002
2	0	2	1	0	1	3289.2443	0.0002
2	1	2	1	1	1	3192.1944	0.0008
3	1	3	2	1	2	4782.3441	0.0001
3	0	3	2	0	2	4909.6180	-0.0011
3	1	2	2	1	1	5102.6735	-0.0013
4	1	4	3	1	3	6366.1364	0.0019
4	0	4	3	0	3	6503.8701	0.0035
4	1	3	3	1	2	6790.5646	-0.0024
5	1	5	4	1	4	7942.6387	0.0036
1	1	1	0	0	0	2459.1069	0.0008
2	1	2	1	0	1	4001.7167	-0.0007
3	1	3	2	0	2	5494.8174	0.0000
4	1	4	3	0	3	6951.3256	-0.0071
2	0	2	1	1	1	2479.7243	0.0041
3	0	3	2	1	2	4197.1473	0.0015
4	0	4	3	1	3	5918.6675	-0.0009
5	0	5	4	1	4	7623.4478	0.0003
2	1	1	1	0	1	4322.6359	0.0103
3	1	2	2	0	2	6136.0526	-0.0037
2	2	0	1	1	0	5844.6307	0.0014
3	2	1	2	2	0	4987.8492	-0.0060
4	2	2	3	2	1	6684.9586	-0.0053

4	3	2	3	3	1	6616.5571	0.0042
4	3	1	3	3	0	6619.9987	0.0009

J'	<i>K</i> ' ₋₁	K'_{+1}	J"	K''_{-1}	K''_{+1}	v_{obs}	v_{obs} - v_{calc}	11 10
3	1	3	3	0	3	2248.4633	-0.0018	3
2	1	2	2	0	2	2303.6163	-0.0078	6
1	1	1	1	0	1	2340.9576	-0.0075	5 1
1	1	0	1	0	1	2378.7598	0.0001	
2	1	1	2	0	2	2417.0071	-0.0007	4 2
3	1	2	3	0	3	2475.2293	0.0002	3
4	1	3	4	0	4	2554.4370	0.0022	
5	1	4	5	0	5	2655.9607	0.0032	7
2	1	2	1	1	1	2754.8155	0.0018	
2	0	2	1	0	1	2792.1536	-0.0011	
2	1	1	1	1	0	2830.4014	-0.0014	
4	0	4	3	1	3	3332.2172	0.0038	
1	1	1	0	0	0	3737.2660	-0.0036	
1	1	0	Ő	Ő	Ő	3775.0590	-0.0052	
3	1	3	2	1	2	4131 9371	-0.0005	
3	2	2	2	2	1	4188 9094	-0.0004	
3	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	0	4190 7285	0.0033	
3	0	3	$\frac{2}{2}$	0	2	4187 0979	0.0013	
3	1	2	2	1	1	4245 3195	0.0017	
5	0	5	2 4	1	4	4795 9466	0.0017	
2	1	2	1	0	1	5095 7763	-0.0025	
2	1	1	1	0	1	5209 1617	-0.00023	
1	1	1	3	1	3	5508 7271	0.0006	
	0	4	3	0	3	5580 6766	-0.0019	
4	2	3	3	2	2	5584 8654	-0.0017	
	2	2	3	2	1	5586 1171	0.0072	
	3	1	3	3	0	5586 1171	-0.0088	
4	2	2	2	2	1	5580.1171	-0.0088	
4	2	23	3	2	1	5650 8865	-0.0030	
4	1	2	2	1	2	<i>6435 5501</i>	0.0022	
2	1	2	$\frac{2}{2}$	0	$\frac{2}{2}$	6662 3263	-0.0020	
5	1	2	2 4	0	2 1	6885 0740	0.0000	
5	1	5	4	1	4	6072 4545	-0.0019	
5	0	3	4	0	4	6080 5002	-0.0009	
5	2	4	4	2	3	6080.5005	-0.0021	
5	2 1	5	4	ے 1	2	0989.303/	0.0042	
5	1	4	4	1	3	1013.9133	-0.0028	
4	1	4	5	0	5	7791 4291	-0.0037	
07	1	5	07	0	07	2/01.4201	-0.0003	
/	1	0	/	0	7	2932.7427	0.0004	
5	2	4	5	1	5	/304.810/	0.0093	
0	2	5	0	1	0	/4/9.000/	-0.0217	
4	0	4	3	1	2	3105.4468	-0.0027	
8	1	1	8	0	8	3112.0095	0.010/	
/	1	6	6	2	4	3182.2388	-0.0129	
/	1	0	6	2	5	3213.9556	0.0243	
9	1	8	9	0	9	5521.4221 4419.0106	-0.0031	
5	0	5	4	1	5	4418.0186	-0.0019	
6	0	6	5	1	4	5/06.0326	-0.0068	
6	0	6	5	1	5	62/2.8/02	0.0079	
8	2	6	8	1	7	6503.9045	0.0031	

Table S12.I. Measured frequencies and residuals (in MHz) for the rotational transitions of the conformer **Eq-A** of **limonene**.

7	2	5	7	1	6	6613.5375	0.0081
6	2	4	6	1	5	6717.9636	0.0011
5	2	3	5	1	4	6813.8559	0.0074
4	2	2	4	1	3	6898.2719	0.0068
7	0	7	6	1	5	6967.4669	-0.0050
3	2	1	3	1	2	6968.7748	0.0192
2	2	0	2	1	1	7023.3421	-0.0061
7	2	6	7	1	7	7614.1651	-0.0108
7	0	7	6	1	6	7760.8640	-0.0075

Table S12.II. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_1$ isotopologue of conformer **Eq-A** of **limonene**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> "1	<i>K</i> " ₊₁	ν_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2750.3909	0.0086
2	0	2	1	0	1	2789.1135	-0.0024
3	1	3	2	1	2	4125.2657	0.0008
3	0	3	2	0	2	4182.4297	-0.0055
3	1	2	2	1	1	4242.9495	0.0029
4	1	4	3	1	3	5499.7763	-0.0062
4	0	4	3	0	3	5574.2767	0.0057
4	1	3	3	1	2	5656.6651	-0.0082
1	1	1	0	0	0	3705.2310	-0.0042
2	1	2	1	0	1	5060.8107	-0.0010
3	1	3	2	0	2	6396.9661	0.0054
1	1	0	0	0	0	3744.4546	-0.0091
3	1	2	2	0	2	6632.3369	0.0089

Table S12.III. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_2$ isotopologue of conformer **Eq-A** of **limonene**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> "-1	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2742.9992	-0.0124
3	1	3	2	1	2	4114.2209	0.0054
3	0	3	2	0	2	4170.8411	-0.0008
3	1	2	2	1	1	4230.7287	-0.0071
4	1	4	3	1	3	5485.0653	0.0028
4	0	4	3	0	3	5558.8648	0.0007
4	1	3	3	1	2	5640.4082	0.0030
1	1	1	0	0	0	3707.3299	0.00520
2	1	2	1	0	1	5059.4165	0.0071
3	1	3	2	0	2	6392.2512	-0.0048
1	1	0	0	0	0	3746.1491	-0.0169
2	1	1	1	0	1	5175.9434	0.0099
3	1	2	2	0	2	6625.3000	-0.0004

Table S12.IV. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_3$ isotopologue of conformer **Eq-A** of **limonene**.

J'	<i>K</i> ' ₋₁	K'_{+1}	J"	<i>K"</i> ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2737.7131	-0.0076
2	0	2	1	0	1	2774.5956	-0.0038
3	1	3	2	1	2	4106.3028	-0.0027
3	0	3	2	0	2	4160.7910	-0.0030
3	1	2	2	1	1	4218.2675	0.0046
4	1	4	3	1	3	5474.5670	0.0027
4	0	4	3	0	3	5545.6650	0.0001

4	1	3	3	1	2	5623.8292	0.0036
1	1	1	0	0	0	3733.1113	0.0066
2	1	2	1	0	1	5083.3075	0.0030
3	1	3	2	0	2	6415.0113	0.0007
1	1	0	0	0	0	3770.4166	-0.0083
3	1	2	2	0	2	6638.9266	-0.0021

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2742.6070	0.0023
2	0	2	1	0	1	2781.0999	-0.0018
3	1	3	2	1	2	4113.6025	0.0000
3	0	3	2	0	2	4170.4288	-0.0018
3	1	2	2	1	1	4230.5523	-0.0021
4	1	4	3	1	3	5484.2442	0.0038
4	0	4	3	0	3	5558.3005	0.0042
4	1	3	3	1	2	5640.1557	-0.0027
1	1	1	0	0	0	3704.3034	-0.0024
2	1	2	1	0	1	5056.1186	0.0034
3	1	3	2	0	2	6388.6088	-0.0072
1	1	0	0	0	0	3743.2930	0.0019
2	1	1	1	0	1	5173.0788	0.0079
3	1	2	2	0	2	6622.5200	-0.0036

Table S12.V. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_4$ isotopologue of conformer **Eq-A** of **limonene**.

Table S12.VI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_5$ isotopologue of conformer **Eq-A** of **limonene**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	ν_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2750.7347	-0.0098
2	0	2	1	0	1	2789.3645	0.0012
3	1	3	2	1	2	4125.8170	0.0067
3	0	3	2	0	2	4182.8172	0.0023
3	1	2	2	1	1	4243.1335	-0.0039
4	1	4	3	1	3	5500.5150	0.0013
4	0	4	3	0	3	5574.7958	0.0025
4	1	3	3	1	2	5656.9308	-0.0009
1	1	1	0	0	0	3707.6233	-0.0043
2	1	2	1	0	1	5063.4383	-0.0060
1	1	0	0	0	0	3746.7502	0.0123
3	1	2	2	0	2	6634.5493	0.0000

Table S12.VII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_6$ isotopologue of conformer Eq-A of limonene.

J'	<i>K</i> '-1	<i>K</i> ' ₊₁	J"	<i>K</i> "-1	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2752.9638	0.0073
2	0	2	1	0	1	2790.1235	0.0008
3	1	3	2	1	2	4129.1581	0.0040
3	0	3	2	0	2	4184.0567	-0.0018
3	1	2	2	1	1	4241.9955	-0.0029
4	1	4	3	1	3	5505.0227	0.0029
4	0	4	3	0	3	5576.6369	-0.0092
4	1	3	3	1	2	5655.4655	0.0023
1	1	1	0	0	0	3734.5999	-0.0024
2	1	2	1	0	1	5092.2712	-0.0010
3	1	3	2	0	2	6431.3084	0.0048
4	1	4	3	0	3	7752.2608	-0.0041
3	1	2	2	0	2	6656.9983	0.0027

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2741.9320	-0.0003
2	1	1	1	1	0	2778.7879	-0.0024
3	1	3	2	1	2	4058.6151	0.0073
3	0	3	2	0	2	4111.8518	0.0034
3	1	2	2	1	1	4167.9088	-0.0117
4	1	4	3	1	3	5410.9959	0.0034
4	0	4	3	0	3	5480.5046	-0.0020
4	1	3	3	1	2	5556.7310	0.0023
1	1	1	0	0	0	3725.1709	0.0080
2	1	2	1	0	1	5059.8847	-0.0151
3	1	3	2	0	2	6376.5782	0.0029
4	1	4	3	0	3	7675.7176	-0.0019
1	1	0	0	0	0	3761.6033	0.0018
3	1	2	2	0	2	6595.2080	0.0042

Table S12.VIII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_7$ isotopologue of conformer **Eq-A** of **limonene**.

Table S12.IX. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_9$ isotopologue of conformer **Eq-A** of **limonene**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2736.8055	0.0038
2	0	2	1	0	1	2773.6340	-0.0029
3	1	3	2	1	2	4104.9257	-0.0020
3	0	3	2	0	2	4159.3488	-0.0040
3	1	2	2	1	1	4216.7542	0.0030
4	1	4	3	1	3	5472.7398	0.0114
4	0	4	3	0	3	5543.7400	-0.0081
4	1	3	3	1	2	5621.8068	-0.0044
1	1	1	0	0	0	3732.5282	0.0009
2	1	2	1	0	1	5082.2921	0.0021
3	1	3	2	0	2	6413.5777	-0.0031
1	1	0	0	0	0	3769.7951	-0.0078
3	1	2	2	0	2	6637.2391	0.0080

Table S12.X. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{10}$ isotopologue of conformer **Eq-A** of **limonene**.

J'	<i>K</i> ' ₋₁	K'_{+1}	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2725.5529	0.0101
2	0	2	1	0	1	2760.6720	0.0002
2	1	1	1	1	0	2796.6031	-0.0066
3	1	3	2	1	2	4088.0658	0.0041
3	0	3	2	0	2	4139.9949	-0.0002
3	1	2	2	1	1	4194.6582	-0.0009
4	0	4	3	0	3	5518.0962	-0.0090
4	1	3	3	1	2	5592.4006	0.0027
1	1	1	0	0	0	3701.9932	-0.0099
2	1	2	1	0	1	5047.0088	0.0014
1	1	0	0	0	0	3737.5412	0.0047
3	1	2	2	0	2	6587.5989	0.0039

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2754.3017	-0.0098
3	1	3	2	1	2	4078.5975	0.0125
3	0	3	2	0	2	4130.4631	0.0043
3	1	2	2	1	1	4185.0443	-0.0076
4	1	4	3	1	3	5437.6470	-0.0008
4	0	4	3	0	3	5505.3987	0.0007
4	1	3	3	1	2	5579.5894	-0.0009
1	1	1	0	0	0	3702.8912	0.0027
1	1	0	0	0	0	3738.3776	-0.0008
3	1	2	2	0	2	6581.9698	0.0044
3	1	3	2	0	2	6369.0225	-0.0063

Table S12.XI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{11}$ isotopologue of conformer **Eq-A** of **limonene**.

	1							
J'	<i>K'</i> ₋₁	<i>K</i> ' ₊₁	J"	K''_{-1}	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}	
2	1	2	2	0	2	2219.0294	-0.00692	3
1	1	1	1	0	1	2311.6135	-0.00364	
1	1	0	1	0	1	2407.0991	0.00420	
2	1	1	2	0	2	2505.4773	0.00772	
3	1	2	3	0	3	2658.4184	0.00104	4 2
2	1	2	1	1	1	2682.2461	-0.00006	
2	0	2	1	0	1	2774.8248	-0.00218	
4	0	4	3	1	2	2868.2135	-0.00298	
4	1	3	4	0	4	2872.2199	-0.00068	
2	1	1	1	1	0	2873.2019	0.00023	
5	1	4	5	0	5	3154 7998	-0.00143	
4	0	4	3	1	3	3441 0290	0.00096	
1	1	1	0	0	0	3700 4780	-0.00137	
1	1	0	Ő	Ő	ů 0	3795 9572	0.00008	
3	1	3 3	2	ı 1	2	4021 5835	-0.00051	
3	0	3	$\frac{2}{2}$	0	2	4155 0127	-0.00182	
3	1	2	$\frac{2}{2}$	1	1	4307 9635	0.00102	
2	1	2	1	0	1	4993 8600	-0.00330	
2	1	1	1	0 0	1	5280 2990	0.00244	
2 4	1	л Д	3	1	3	5358 8570	0.00135	
4	0	4	3	0	3	5526 6334	-0 00044	
- Д	1	3	3	1	2	5740 4365	-0.00044	
5	1	5	1	1	2 1	6693 / 97/	0.00057	
5	0	5		1	- -/	6887 1578	0.00008	
5	1	5 1	-+ /	1		7169 7328	-0.000513	
3	1	3	+ 2	1	2	6240 6162	-0.00031	
5 1	1	1	23	0	2	7/1/ 1591	-0.00415	
3	1	+ 2	2	0	2	6813 4365	-0.00230	
5	1	$\frac{2}{3}$	2 1	0	$\frac{2}{2}$	600/ 0083	-0.00401	
5	1	5	т 6	0	6	3515 0638	0.00312	
07	1	5	6	2	4	3716 0325	0.00312	
7	1	6	07	2	+ 7	3961 8218	-0.00109	
5	1	5	1	1	2	101/ 0300	0.00043	
3	2	1	- -	1	0	4178 1670	-0.00207	
0	$\frac{2}{2}$	1 8	0	2	0	5047 2700	0.01333	
9	2	8	9 5	1	0 1	5070 7812	0.01779	
8	2	07	8	1	+ 7	5/32 3088	-0.00294	
0	$\frac{2}{2}$	3	3	1	2	5553 1010	-0.00803	
4	$\frac{2}{2}$	2	2	2	2 1	5582 0015	0.00112	
4	$\frac{2}{2}$	6	5 7	2 1	6	5784 5210	0.00277	
7	2	07	6	1	5	5784.5210 6052 7077	-0.00328	
6	2	5	6	1	5	6000 6367	0.00103	
6	2	3	6	1	5	6208 5000	-0.00191	
5	$\frac{2}{2}$	4	5	1	5 1	6274 2546	-0.00348	
5	2	4	5	1	4	6474.3340	-0.00189	
5		5	5 5	1	4 5	6510 4150	-0.00000	
1	0 2	2	5 1	1	2 2	6606 2250	0.00130	
4 1	∠ 2	3 2	4 1	1	2 2	6640 5100	-0.0014/	
4	∠ 2	∠ 1	4 2	1	2 2	6807 0245	0.00772	
5	∠ 2	1 1	5 1	1	2 2	6027 9572	-0.00011	
2	∠ 2		+ 2	∠ 1	2	7280 7241	-0.00013	
5 1	∠ 2	2	5 Л	1	Э Л	7500.7341	-0.0100/	
4	2	∠ 2	4 5	1	4 5	7005.2081	0.01280	
3	4	3	5	1	5	1703.4120	0.00928	

Table S13.I. Measured frequencies and residuals (in MHz) for the rotational transitions of the conformer Eq-C of limonene.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2678.7261	0.00100
2	0	2	1	0	1	2772.0988	0.01525
3	1	3	2	1	2	4016.2424	-0.00648
3	0	3	2	0	2	4150.6774	-0.00364
3	1	2	2	1	1	4305.2181	-0.00268
4	1	4	3	1	3	5351.6416	-0.00455
4	0	4	3	0	3	5520.4550	-0.00086
5	1	5	4	1	4	6684.3443	0.00551

Table S13.II. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_1$ isotopologue of conformer **Eq-C** of **limonene**.

Table S13.III. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_2$ isotopologue of conformer **Eq-C** of **limonene**.

<i>K</i> ' ₋₁	K'_{+1}	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
0	2	1	0	1	2764.5546	0.00462
1	1	1	1	0	2863.3623	0.00566
1	3	2	1	2	4005.6400	-0.01004
0	3	2	0	2	4139.4695	0.00496
1	2	2	1	1	4293.1555	-0.00446
1	4	3	1	3	5337.5473	-0.00410
0	4	3	0	3	5505.6503	-0.00415
1	3	3	1	2	5720.6326	-0.00042
1	5	4	1	4	6666.7855	0.00854
	$ \begin{array}{c} K'_{-1} \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{array} $	$\begin{array}{c ccc} K'_{-1} & K'_{+1} \\ \hline 0 & 2 \\ 1 & 1 \\ 1 & 3 \\ 0 & 3 \\ 1 & 2 \\ 1 & 4 \\ 0 & 4 \\ 1 & 3 \\ 1 & 5 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table S13.IV. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_3$ isotopologue of conformer **Eq-C** of **limonene**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2757.3150	-0.00424
2	1	1	1	1	0	2854.4355	0.00702
3	1	3	2	1	2	3997.0400	0.00293
3	0	3	2	0	2	4128.9439	-0.00009
3	1	2	2	1	1	4279.8490	-0.00269
4	1	4	3	1	3	5326.1998	-0.01117
4	0	4	3	0	3	5492.2235	-0.00078
5	1	5	4	1	4	6652.8287	0.00836

Table S13.V. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_4$ isotopologue of conformer **Eq-C** of **limonene**.

		1					
J'	K'-1	K'_{+1}	J"	K''_{-1}	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2763.4625	-0.01097
3	1	3	2	1	2	4003.9865	-0.00189
3	0	3	2	0	2	4137.8344	-0.00415
3	1	2	2	1	1	4291.6105	0.01053
4	1	4	3	1	3	5335.3346	0.00365
4	0	4	3	0	3	5503.4682	0.00225
4	1	3	3	1	2	5718.5427	-0.00470
5	1	5	4	1	4	6663.9947	0.00077

J'	<i>K</i> '-1	<i>K</i> ' ₊₁	J"	<i>K</i> ". ₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2771.9627	-0.01995
3	1	3	2	1	2	4015.3345	-0.00036
3	0	3	2	0	2	4150.4388	0.00108
3	1	2	2	1	1	4305.8970	0.00021
4	1	4	3	1	3	5350.3897	0.00286
4	0	4	3	0	3	5519.9619	-0.00075
4	1	3	3	1	2	5737.5327	0.00481
5	1	5	4	1	4	6682.7045	0.00189

Table S13.VI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_5$ isotopologue of conformer **Eq-C** of **limonene**.

Table S13.VII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_6$ isotopologue of conformer **Eq-C** of **limonene**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2772.8612	-0.00147
3	1	3	2	1	2	4018.9803	0.00893
3	0	3	2	0	2	4152.0958	0.00096
3	1	2	2	1	1	4304.6634	0.00020
4	0	4	3	0	3	5522.7900	-0.00026
4	1	4	3	1	3	5355.3720	-0.01206
5	1	5	4	1	4	6689.1800	0.00442

Table S13.VIII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{7}$ isotopologue of conformer **Eq-C** of **limonene**.

J'	K'-1	<i>K</i> ' ₊₁	J"	<i>K"</i> .1	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	3951.6575	-0.00089
3	0	3	2	0	2	4080.7423	0.00798
3	1	2	2	1	1	4227.8904	0.00643
4	0	4	3	0	3	5428.5668	-0.00866
4	1	3	3	1	2	5633.9255	-0.00548
5	0	5	4	0	4	6766.1071	0.00319

Table S13.IX. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_9$ isotopologue of conformer **Eq-C** of **limonene**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2756.5215	-0.01203
2	1	2	1	1	1	2665.1508	0.00496
2	1	1	1	1	0	2853.5460	-0.00613
3	0	3	2	0	2	4127.7737	-0.00335
3	1	2	2	1	1	4278.5486	0.00846
3	1	3	2	1	2	3995.9844	0.00107
4	0	4	3	0	3	5490.6917	0.00196

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2647.3794	-0.00923
2	0	2	1	0	1	2738.2707	0.00270
3	0	3	2	0	2	4100.3912	0.00291
3	1	2	2	1	1	4250.3695	-0.00085
4	0	4	3	0	3	5454.1870	-0.00285
4	1	3	3	1	2	5663.7528	0.00030
5	1	5	4	1	4	6606.7068	0.00342

Table S13.X. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{10}$ isotopologue of conformer **Eq-C** of **limonene**.

Table S13.XI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{11}$ isotopologue of conformer **Eq-C** of **limonene**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	2651.2901	0.00833
2	0	2	1	0	1	2742.4195	0.00080
3	1	3	2	1	2	3975.1725	-0.00601
3	0	3	2	0	2	4106.5722	0.00319
3	1	2	2	1	1	4257.0265	0.00075
4	1	3	3	1	2	5672.6040	0.00016
J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
----	--------------------------	--------------------------	----	--------------------------	--------------------------	-----------	------------------------
2	1	2	1	1	1	2676.9171	0.00455
2	0	2	1	0	1	2775.4819	-0.00065
2	1	1	1	1	0	2880.6955	0.00711
3	1	3	2	1	2	4013.3324	0.00455
3	1	2	2	1	1	4318.9263	0.00225
4	1	4	3	1	3	5347.3877	0.00026
4	0	4	3	0	3	5524.6340	0.00193
4	1	3	3	1	2	5754.5374	0.00342
5	1	5	4	1	4	6678.4587	0.00017
5	0	5	4	0	4	6881.6762	-0.00657
5	1	4	4	1	3	7186.4888	0.00667
1	1	1	0	0	0	3684.2278	-0.00955
2	1	2	1	0	1	4971.7490	-0.00066
3	1	3	2	0	2	6209.5953	0.00033
4	1	4	3	0	3	7402.0297	-0.00029
4	0	4	3	1	3	3469.9883	-0.00122
5	0	5	4	1	4	5004.2776	-0.00725
6	0	6	5	1	5	6549.7982	-0.00234

Table S14.I. Measured frequencies and residuals (in MHz) for the rotational transitions of the conformer Eq-a of limonene.

Table S15.I. Measured frequencies and residuals (in MHz) for the rotational transitions of the conformer **Ax-a** of **limonene**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v _{obs}	v_{obs} - v_{calc}
2	1	2	1	1	1	3647.0734	0.00595
2	0	2	1	0	1	3677.9947	-0.00032
2	1	1	1	1	0	3710.1237	-0.00555
3	1	3	2	1	2	5470.2174	-0.00006
3	0	3	2	0	2	5515.4861	0.00353
3	1	2	2	1	1	5564.8011	-0.00193
4	1	4	3	1	3	7292.9169	-0.00003
4	0	4	3	0	3	7351.1723	0.00566
4	1	3	3	1	2	7418.9916	-0.00617
1	1	0	0	0	0	3098.5446	-0.00045
2	1	1	1	0	1	4969.3752	0.00070
3	1	2	2	0	2	6856.1822	-0.00031
1	1	1	0	0	0	3067.0114	-0.00275
2	1	2	1	0	1	4874.7812	-0.00061
3	1	3	2	0	2	6667.0064	0.00214
2	0	2	1	1	1	2450.2853	0.00464
3	0	3	2	1	1	4224.0950	-0.00809
4	0	4	3	1	2	6010.4595	-0.00720
4	0	4	3	1	3	6199.6365	-0.00846
3	0	3	2	1	2	4318.6906	-0.00518
2	0	2	1	1	0	2418.7519	0.00214
4	1	4	3	2	1	3464.4906	0.00161
5	1	4	4	2	3	5698.5765	0.00799
2	2	1	1	1	0	7393.3023	0.01870
5	2	4	5	1	5	3969.3051	0.00522
4	2	3	4	1	4	3889.2233	-0.00424
3	2	2	3	1	3	3825.4194	-0.01214
5	2	3	5	1	4	3517.4408	0.00059
4	2	2	4	1	3	3582.9500	0.00263

3	2	1	3	1	2	3639.2473	-0.00239	
5	2	4	5	1	4	3496.5385	0.00264	
4	2	3	4	1	3	3573.9678	-0.00065	
3	2	2	3	1	2	3636.2456	-0.00768	⁹ 7 / ⁸
Table S16	J. Measu	red frequencies	s and r	esiduals (in	MHz) for	the rotational	transitions of	the
aonformar]	Fa A of n	orilloldobydo	o unu n	conducto (in	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ine rotational	d'anoitions of	
	Eq-A of p	er maluenyue.						
<i>J</i> '	K'-1	<i>K</i> ' ₊₁	<i>J</i> "	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}	$2 \int 0$
2	0	2	1	0	1	2093.2959	-0.00121	
2	1	1	1	1	0	2119.8626	-0.00630	3
2	1	2	1	1	1	2067.1554	-0.00175	4
3	0	3	2	0	2	3139.4044	0.00003	
3	1	3	2	1	2	3100 5999	-0.00042	
3	1	2	2	1	- 1	3179 6660	-0.00084	
1	0	2	$\frac{2}{3}$	0	3	/18/ 8629	0.00025	
4	1	4	2	1	2	4122 8804	0.00023	
4	1	4	2	1	5	4133.0004	-0.00214	
4	1	5	3	1	2	4239.2984	-0.00099	
5	0	5	4	0	4	5229.4585	0.00106	
5	l	5	4	1	4	5166.9528	0.00007	
5	1	4	4	1	3	5298.7081	-0.00072	
6	0	6	5	0	5	6272.9767	-0.00088	
6	1	6	5	1	5	6199.7598	-0.00219	
6	1	5	5	1	4	6357.8334	-0.00177	
7	0	7	6	0	6	7315.2177	-0.00052	
7	1	7	6	1	6	7232.2636	-0.00050	
7	1	6	6	1	5	7416.6143	-0.00130	
1	1	1	0	0	0	3442,8840	-0.00160	
1	1	0	Õ	Ő	0 0	3469 2399	-0.00158	
2	1	2	1	0	1	1162 2862	0.00038	
2	1	2	1	0	1	4403.2803	0.00038	
2	1	1	1	0	1	4342.3321	-0.00143	
3	1	3	2	0	2	54/0.5858	-0.00333	
3	l	2	2	0	2	5628.7198	-0.00347	
4	1	3	3	0	3	6728.6187	0.00041	
4	1	4	3	0	3	6465.0650	-0.00229	
5	1	5	4	0	4	7447.1546	-0.00277	
5	1	4	4	0	4	7842.4700	0.00554	
5	0	5	4	1	4	2949.2538	0.00100	
6	0	6	5	1	4	3659.9810	0.01044	
6	0	6	5	1	5	4055.2784	0.00075	
7	0	7	6	1	6	5170.7446	0.01071	
8	0	8	7	1	7	6294 4714	0.01656	
1	1	1	1	0	1	2396 1254	-0.00337	
1	1	0	1	Ő	1	2222 4872	0.00255	
2	1	1	2	0	2	2422.4672	0.00233	
$\frac{2}{2}$	1	1	2	0	2	2360 0804	-0.0003+	
2	1	2	2	0	2	2309.9604	-0.00841	
3	1	3	2	0	3	2551.1795	-0.00320	
3	1	2	3	0	3	2489.3231	0.00420	
4	l	3	4	0	4	2543.7596	0.00396	
5	I	4	5	0	5	2613.0116	0.00458	
2	2	0	2	1	1	7188.6062	0.00460	
2	2	1	2	1	2	7267.4511	-0.00190	
3	2	2	3	1	3	7307.1229	0.00290	
3	2	1	3	1	3	7308.2046	0.00355	
3	2	2	3	1	2	7148.9834	-0.00246	
3	2	1	3	1	2	7150.0714	0.00449	
5	2	3	5	- 1	4	7038.6955	0.00788	
6	2	4	6	1	5	6967 9615	0.00444	
6	2	5	6	1	6	7506 2072	-0.01573	
.	_	-	~	-			··· · · · · · ·	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	2	5	7	1	6	6888.9998	0.00409
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	2	6	7	1	7	7599.5465	-0.00587
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	2	7	8	1	8	7706.5034	-0.01289
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	2	6	8	1	7	6803.4465	0.01419
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	2	2	2	2	1	3140.2614	-0.00592
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	2	1	2	2	0	3141.1407	0.00856
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	2	3	3	2	2	4186.8540	0.00062
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	2	2	3	2	1	4189.0167	0.00191
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	3	2	3	3	1	4187.4529	0.00531
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	3	1	3	3	0	4187.4529	-0.00134
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2	4	4	2	3	5233.2883	-0.00569
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2	3	4	2	2	5237.6230	0.00887
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	2	5	5	2	4	6279.5568	0.00399
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2	4	5	2	3	6287.0991	-0.00550
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	3	4	5	3	3	6281.7035	0.02399
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	3	3	5	3	2	6281.7035	-0.03809
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	2	6	6	2	5	7325.5940	0.00046
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	2	5	6	2	4	7337.6515	-0.00275
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3	5	6	3	4	7329.0772	0.07944
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	3	4	6	3	3	7329.0772	-0.06019
	5	0	5	4	1	3	2685.6966	-0.00520
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0	6	5	1	4	3659.9672	-0.00336
8 0 8 7 1 6 5556.7153 -0.00777 9 0 9 8 1 7 6476.8334 -0.00582 10 0 10 9 1 8 7376.3750 -0.00258	7	0	7	6	1	5	4617.3481	-0.00552
9 0 9 8 1 7 6476.8334 -0.00582 10 0 10 9 1 8 7376.3750 -0.00258	8	0	8	7	1	6	5556.7153	-0.00777
10 0 10 9 1 8 7376.3750 -0.00258	9	0	9	8	1	7	6476.8334	-0.00582
	10	0	10	9	1	8	7376.3750	-0.00258

Table S16.II. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_1$ isotopologue of conformer **Eq-A** of **perillaldehyde**.

J'	<i>K'</i> -1	<i>K</i> ' ₊₁	J"	<i>K</i> "-1	<i>K</i> " ₊₁	ν_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2	3135.3553	0.00184
3	1	3	2	1	2	3096.7498	-0.00196
3	1	2	2	1	1	3175.3991	0.00112
4	0	4	3	0	3	4179.4707	-0.00150
4	1	4	3	1	3	4128.7556	0.00182
4	1	3	3	1	2	4233.6101	-0.00022
5	0	5	4	0	4	5222.7322	-0.00444
5	1	5	4	1	4	5160.5459	-0.00010
5	1	4	4	1	3	5291.5952	-0.00674
6	1	6	5	1	5	6192.0795	-0.00050
6	1	5	5	1	4	6349.3087	-0.00484
7	0	7	6	0	6	7305.8730	0.00008
7	1	7	6	1	6	7223.3119	0.00189
7	1	6	6	1	5	7406.6932	0.01019

Table S16.III. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_2$ isotopologue of conformer Eq-A of perillaldehyde.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2	3136.8417	0.00342
3	1	3	2	1	2	3097.1289	0.01127
3	1	2	2	1	1	3178.1040	-0.00018

4	0	4	3	0	3	4181.3941	0.01288
4	1	4	3	1	3	4129.2363	0.01212
4	1	3	3	1	2	4237.2033	0.00272
5	0	5	4	0	4	5225.0265	0.01693
5	1	4	4	1	3	5296.0706	0.01014
6	0	6	5	0	5	6267.5255	0.02551
6	1	6	5	1	5	6192.7149	0.00232
6	1	5	5	1	4	6354.6259	0.00582
7	0	7	6	0	6	7308.6450	0.00868
7	1	7	6	1	6	7224.0068	0.01263
7	1	6	6	1	5	7412.8307	0.01810

Table S16.IV. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_3$ isotopologue of conformer **Eq-A** of **perillaldehyde**.

J'	K'_{-1}	K'_{+1}	J"	<i>K"</i> ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2	3133.2814	-0.00394
3	1	3	2	1	2	3093.6398	-0.00262
4	0	4	3	0	3	4176.6588	0.00935
4	1	4	3	1	3	4124.5935	0.00159
4	1	3	3	1	2	4232.3465	-0.00405
5	0	5	4	0	4	5219.1043	0.00069
5	1	5	4	1	4	5155.3081	-0.01006
5	1	4	4	1	3	5289.9977	-0.00248
6	0	6	5	0	5	6260.4281	0.00249
6	1	5	5	1	4	6347.3504	-0.00073
7	0	7	6	0	6	7300.3959	-0.00441
7	1	7	6	1	6	7215.9049	0.00647
7	1	6	6	1	5	7404.3407	0.00378

Table S16.V. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_4$ isotopologue of conformer **Eq-A** of **perillaldehyde**.

8			r • • • • • • • • • • • • • • • • • • •				
J'	K'-1	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	ν_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2	3129.8939	0.00401
3	1	3	2	1	2	3091.2797	0.00814
3	1	2	2	1	1	3169.9375	-0.01355
4	0	4	3	0	3	4172.1900	0.00258
4	1	4	3	1	3	4121.4505	0.00366
4	1	3	3	1	2	4226.3473	-0.00044
5	0	5	4	0	4	5213.6323	0.00165
5	1	5	4	1	4	5151.4005	-0.01181
5	1	4	4	1	3	5282.5155	-0.00821
6	0	6	5	0	5	6253.9991	-0.01149
6	1	6	5	1	5	6181.1196	0.00004
6	1	5	5	1	4	6338.4256	0.00593
7	0	7	6	0	6	7293.1282	0.00376
7	1	7	6	1	6	7210.5265	0.00369
7	1	6	6	1	5	7393.9812	0.00770

Table S16.VI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_5$ isotopologue of conformer **Eq-A** of **perillaldehyde**.

	J'	<i>K</i> ' ₋₁	K'_{+1}	J"	<i>K</i> " ₋₁	K''_{+1}	ν_{obs}	v_{obs} - v_{calc}
--	----	--------------------------	-----------	----	--------------------------	------------	-------------	------------------------

3	0	3	2	0	2	3133.5405	0.00081
3	1	3	2	1	2	3093.4875	0.00165
3	1	2	2	1	1	3175.1786	0.00780
4	0	4	3	0	3	4176.9707	0.00969
4	1	4	3	1	3	4124.3819	0.00553
4	1	3	3	1	2	4233.2887	0.00492
5	0	5	4	0	4	5219.4556	0.00670
5	1	5	4	1	4	5155.0597	0.02173
5	1	4	4	1	3	5291.1689	0.01361
6	0	6	5	0	5	6260.7984	0.02282
6	1	6	5	1	5	6185.4241	0.00603
6	1	5	5	1	4	6348.7199	-0.00032
7	0	7	6	0	6	7300.7347	0.01399
7	1	7	6	1	6	7215.4780	0.01087

Table S16.VII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_6$ isotopologue of conformer **Eq-A** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	ν_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2	3135.6555	-0.00772
3	1	3	2	1	2	3095.5974	0.01597
3	1	2	2	1	1	3177.3230	0.00117
4	0	4	3	0	3	4179.7925	-0.00018
4	1	4	3	1	3	4127.1692	-0.00135
4	1	3	3	1	2	4236.1462	-0.00570
5	0	5	4	0	4	5222.9852	-0.00377
5	1	5	4	1	4	5158.5256	-0.00521
5	1	4	4	1	3	5294.7487	0.00813
6	1	6	5	1	5	6189.6067	-0.00293
6	1	5	5	1	4	6353.0263	0.00355
7	0	7	6	0	6	7305.6807	0.00219
7	1	7	6	1	6	7220.3596	0.00212
7	1	6	6	1	5	7410.9260	-0.00413

Table S16.VIII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_7$ isotopologue of conformer **Eq-A** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2	3117.6118	-0.00886
3	1	3	2	1	2	3079.3654	0.01058
3	1	2	2	1	1	3157.3144	0.01154
4	0	4	3	0	3	4155.8458	-0.00092
4	1	4	3	1	3	4105.5591	-0.00326
4	1	3	3	1	2	4209.4944	0.00627
5	0	5	4	0	4	5193.2355	0.00143
5	1	5	4	1	4	5131.5593	-0.00457
5	1	4	4	1	3	5261.4484	-0.00836
6	0	6	5	0	5	6229.5793	0.00185
6	1	6	5	1	5	6157.3136	0.00184
6	1	5	5	1	4	6313.1487	-0.00187
7	0	7	6	0	6	7264.6774	-0.00017
7	1	7	6	1	6	7182.7610	-0.00003

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2	3099.2124	-0.00009
3	1	3	2	1	2	3062.4913	0.00755
3	1	2	2	1	1	3137.2466	-0.00707
4	0	4	3	0	3	4131.3738	-0.00047
4	1	4	3	1	3	4083.0916	0.00629
4	1	3	3	1	2	4182.7680	-0.00611
5	0	5	4	0	4	5162.7688	0.01022
5	1	5	4	1	4	5103.4949	-0.00078
5	1	4	4	1	3	5228.0942	0.00033
6	0	6	5	0	5	6193.1747	-0.00018
6	1	6	5	1	5	6123.6702	-0.00039
7	0	7	6	0	6	7222.4352	-0.00260
7	1	7	6	1	6	7143.5600	-0.00805
7	1	6	6	1	5	7317.9180	0.00417

Table S16.IX. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_8$ isotopologue of conformer **Eq-A** of **perillaldehyde**.

Table S16.X. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{9}$ isotopologue of conformer **Eq-A** of **perillaldehyde**.

	6		*	ť			
J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	ν_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2	3105.4790	0.00198
3	1	3	2	1	2	3068.6232	-0.00439
3	1	2	2	1	1	3143.6499	-0.00217
4	0	4	3	0	3	4139.7113	-0.00659
4	1	4	3	1	3	4091.2639	-0.01095
4	1	3	3	1	2	4191.2996	-0.00339
5	0	5	4	0	4	5173.1775	0.00397
5	1	5	4	1	4	5113.7366	0.00754
5	1	4	4	1	3	5238.7520	0.00080
6	0	6	5	0	5	6205.6507	-0.00087
6	1	5	5	1	4	6285.9542	0.01184
7	0	7	6	0	6	7236.9642	-0.00070
7	1	7	6	1	6	7157.8854	0.00352
7	1	6	6	1	5	7332.8126	-0.00707

Table S16. XI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{10}$ isotopologue of conformer **Eq-A** of **perillaldehyde**.

J'	<i>K</i> '-1	<i>K</i> ' ₊₁	J"	<i>K</i> "-1	<i>K</i> " ₊₁	ν_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2	3106.7478	-0.00906
3	1	3	2	1	2	3068.6238	-0.00581
3	1	2	2	1	1	3146.2987	0.00752
4	1	4	3	1	3	4091.2644	0.00073
4	1	3	3	1	2	4194.8096	0.00207
5	0	5	4	0	4	5175.1433	-0.00275
5	1	4	4	1	3	5243.1112	0.00254
6	0	6	5	0	5	6207.8841	-0.00275
6	1	6	5	1	5	6135.8847	0.01433
6	1	5	5	1	4	6291.1428	0.00601
7	0	7	6	0	6	7239.3968	0.00438
7	1	7	6	1	6	7157.7427	-0.00829
7	1	6	6	1	5	7338.8220	-0.00945

		JJ						
J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}	⁹ 7 /8
2	0	2	1	0	1	000	-0.01440	
						2076.2858		1
2	1	1	1	1	0	2132.6525	0.01265	6 2
$\overline{2}$	1	2	1	1	1	2021.8498	-0.00062	
3	0	$\frac{1}{3}$	2	0	2	3112 0899	0.00077	5
3	1	3	2	1	2	3032 1894	0.00006	3
3	1	2	2	1	1	3198 3630	-0.00041	4
4	0	2 4	3	0	3	4145 0546	-0.00077	10
4	1	4	3	1	3	4041 8389	0.00017	0
4	1	3	3	1	2	4263 3567	-0.00045	
5	0	5	<u>ј</u>	0	$\frac{2}{4}$	5174 2934	0.00107	
5	1	5	-т Л	1		5050 5929	0.00107	
5	1	1		1	3	5327 3549	0.00100	
6	0	-	- - -5	0	5	6108 05/0	-0.00053	
6	1	6	5	1	5	6058 2602	-0.00033	
6	1	5	5	1	5	6200 0656	-0.00127	
07	1	3	5	1	4	7218 2076	-0.00003	
7	0	7	6	0	0	7218.3070	-0.00009	
7	1		0	1	0	7451 1700	-0.00229	
2	1	0	0	1	5	/451.1/90	-0.00102	
3	2	2	2	2	1	3115.8728	0.00576	
3	2	1	2	2	0	3119.6522	0.00725	
4	2	3	3	2	2	4153./55/	0.00255	
4	2	2	3	2	1	4163.1830	-0.00285	
5	2	3	4	2	2	5209.8193	-0.00429	
5	2	4	4	2	3	5191.0188	0.01038	
6	2	5	5	2	4	6227.4816	0.00597	
6	2	4	5	2	3	6260.2403	-0.00457	
7	2	6	6	2	5	7262.9985	0.00014	
7	2	5	6	2	4	7315.0182	-0.00532	
5	3	3	4	3	2	5196.2594	0.00764	
5	3	2	4	3	1	5196.4535	-0.00973	
6	3	4	5	3	3	6236.6473	0.00164	
6	3	3	5	3	2	6237.2048	-0.00439	
6	4	3	5	4	2	6234.9441	0.00536	
6	4	2	5	4	1	6234.9441	0.00216	
7	3	5	6	3	4	7277.5739	-0.00122	
7	3	4	6	3	3	7278.8414	-0.00017	
7	4	4	6	4	3	7275.0433	-0.00044	
7	4	3	6	4	2	7275.0433	-0.01113	
1	1	1	0	0	0	3446.2338	-0.00032	
2	1	2	1	0	1	4429.4630	0.00116	
3	1	3	2	0	2	5385.3504	-0.00058	
4	1	4	3	0	3	6315.1007	0.00012	
5	1	5	4	0	4	7220.6366	-0.00051	
5	0	5	4	1	4	3004.2472	0.00008	
6	0	6	5	1	5	4152.6081	-0.00165	
7	0	7	6	1	6	5312.6632	0.00663	
8	0	8	7	1	7	6479.7706	0.00075	
1	1	0	0	0	0	3501.6219	-0.00694	
2	- 1	1	1	0	1	4595.6439	-0.00209	
3	1	2	2	0	2	5717 7116	0.00240	
4	1	3	3	Õ	3	6868 9768	-0.00042	
1	1	0	1	Õ	1	2463 0095	0.00336	
2	1	1	2	õ	2	2519 3496	0.00381	

Table S17. I. Measured frequencies and residuals (in MHz) for the rotational transitions of the conformer Eq-C of perillaldehyde.

3	1	2	3	0	3	2605.6219	0.00183
4	1	3	4	0	4	2723.9236	0.00175
5	1	4	5	0	5	2876.9852	0.00168
6	1	5	6	0	6	3068.0980	0.00278
7	1	6	7	0	7	3300.9695	0.00255
8	1	7	8	0	8	3579.5194	-0.00105
2	2	0	2	1	1	7223.7860	0.00679
2	2	1	2	1	2	7389.0261	0.00768
3	2	2	3	1	3	7472.7060	0.00988
4	2	2	4	1	3	7044.9008	0.01136
4	2	3	4	1	4	7584.5929	-0.01764
5	2	3	5	1	4	6927.3617	0.00268
6	2	5	6	1	6	7894.2303	-0.01092
6	2	4	6	1	5	6797.5381	0.00044
7	2	5	7	1	6	6661.3745	-0.00666
8	2	6	8	1	7	6525.5768	-0.00885
9	1	8	9	0	9	3907.6162	0.00959
10	1	9	10	0	10	4288.6549	-0.00659
1	1	1	1	0	1	2407.6182	0.00678
2	1	2	2	0	2	2353.1625	0.00086
5	0	5	4	1	3	2450.3696	-0.00089
6	0	6	5	1	4	3321.9690	-0.00201
7	0	7	6	1	5	4150.2132	0.00013
8	0	8	7	1	6	4930.8275	-0.00232
9	0	9	8	1	7	5659.5945	0.00536

Table S17. II. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_1$ isotopologue of conformer **Eq-C** of **perillaldehyde**.

		· · · · ·	I ·····	J			
J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2		0.00456
						3108.1699	
3	1	2	2	1	1	3194.1236	-0.00854
4	0	4	3	0	3	4139.8429	-0.00864
4	1	3	3	1	2	4257.7181	-0.00460
5	0	5	4	0	4	5167.8245	-0.00740
5	1	5	4	1	4	5044.5171	0.00082
5	1	4	4	1	3	5320.3217	-0.00116
6	0	6	5	0	5	6191.2650	-0.00074
6	1	5	5	1	4	6381.6587	0.01186
7	0	7	6	0	6	7209.4251	0.00219
7	1	7	6	1	6	7056.2181	0.00277
7	1	6	6	1	5	7441.3834	0.00031

Table S17. III. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_2$ isotopologue of conformer Eq-C of perillaldehyde.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
5	0	5	4	0	4		0.00550
						5169.5064	
5	1	5	4	1	4	5044.5178	-0.00179
5	1	4	4	1	3	5324.9524	0.00385
6	0	6	5	0	5	6192.8364	0.00815
6	1	5	5	1	4	6387.0570	-0.01415

4	1	3	3	1	2	4261.4940	0.00397
3	0	3	2	0	2	3109.4904	-0.00635
3	1	2	2	1	1	3197.0032	0.00765
7	1	6	6	1	5	7447.5327	0.00253
7	0	7	6	0	6	7210.6580	-0.00562

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2		-0.00182
						3105.7977	
3	1	2	2	1	1	3192.6802	0.00017
4	0	4	3	0	3	4136.5689	-0.00332
4	1	4	3	1	3	4032.8008	-0.00819
4	1	3	3	1	2	4255.7526	-0.00136
5	0	5	4	0	4	5163.5345	-0.00012
5	1	5	4	1	4	5039.2656	-0.00239
5	1	4	4	1	3	5317.8068	-0.00131
6	0	6	5	0	5	6185.8102	-0.01541
6	1	6	5	1	5	6044.6327	0.01177
6	1	5	5	1	4	6378.5519	0.00439
7	0	7	6	0	6	7202.7102	0.00852
7	1	6	6	1	5	7437.6518	0.00162

Table S17. IV. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_3$ isotopologue of conformer **Eq-C** of **perillaldehyde**.

Table S17. V. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_4$ isotopologue of conformer **Eq-C** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K"</i> -1	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2		0.00699
						3102.6772	
3	1	3	2	1	2	3023.1796	-0.01353
3	1	2	2	1	1	3188.4491	-0.00142
4	0	4	3	0	3	4132.5309	-0.01492
4	1	4	3	1	3	4029.8637	0.00797
4	1	3	3	1	2	4250.1497	-0.00300
5	1	5	4	1	4	5035.6350	0.00316
5	1	4	4	1	3	5310.8730	0.00358
6	0	6	5	0	5	6180.4013	0.00585
6	1	6	5	1	5	6040.3364	0.00049
6	1	5	5	1	4	6370.3176	0.00116
7	0	7	6	0	6	7196.8023	-0.00234
7	1	6	6	1	5	7428.1841	0.00019

Table S17. VI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_5$ isotopologue of conformer **Eq-C** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> "-1	<i>K</i> " ₊₁	v _{obs}	v_{obs} - v_{calc}
4	0	4	3	0	3		0.00116
						4137.5174	
4	1	4	3	1	3	4033.4030	-0.00550
4	1	3	3	1	2	4257.2086	0.00073
5	0	5	4	0	4	5164.6363	-0.00202
5	1	4	4	1	3	5319.6080	0.00326
6	0	6	5	0	5	6187.0414	0.00046
6	1	6	5	1	5	6045.4716	-0.00091
6	1	5	5	1	4	6380.6720	0.00001
3	0	3	2	0	2	3106.5592	0.01557
3	1	2	2	1	1	3193.7741	-0.00578
5	1	5	4	1	4	5040.0002	0.00108

		_	-	-			
J'	<i>K</i> '-1	<i>K</i> ' ₊₁	J"	<i>K"</i> ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2		-0.00160
						3108.5543	
3	1	3	2	1	2	3027.9175	-0.00115
3	1	2	2	1	1	3195.7734	-0.00055
4	0	4	3	0	3	4140.1979	-0.00475
4	1	4	3	1	3	4036.1096	-0.00045
4	1	3	3	1	2	4259.8722	0.00469
5	0	5	4	0	4	5168.0033	0.00161
5	1	5	4	1	4	5043.3800	0.00266
5	1	4	4	1	3	5322.9283	-0.00245
6	0	6	5	0	5	6191.0857	0.00108
6	1	6	5	1	5	6049.5276	-0.00057
6	1	5	5	1	4	6384.6701	0.00466
7	1	6	6	1	5	7444.7418	-0.00403

Table S17. VII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_6$ isotopologue of conformer **Eq-C** of **perillaldehyde**.

Table S17. VIII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_7$ isotopologue of conformer **Eq-C** of **perillaldehyde**.

J'	K'_{-1}	<i>K</i> ' ₊₁	J"	K''_{-1}	K''_{+1}	ν_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2		-0.00634
						3090.7039	
4	0	4	3	0	3	4116.6655	-0.00824
4	1	4	3	1	3	4014.7601	-0.00156
5	0	5	4	0	4	5139.0097	-0.00194
6	1	6	5	1	5	6017.7770	0.00777
6	0	6	5	0	5	6156.9050	0.00546
6	1	5	5	1	4	6345.0416	-0.00213
3	1	2	2	1	1	3175.7474	-0.00896
5	1	5	4	1	4	5016.7819	-0.01078
5	1	4	4	1	3	5289.7814	0.01279
7	0	7	6	0	6	7169.6160	-0.00279
7	1	7	6	1	6	7017.5364	0.00539

Table S17. IX. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_8$ isotopologue of conformer **Eq-C** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2		0.00779
						3072.6207	
3	1	2	2	1	1	3156.9422	-0.00903
4	0	4	3	0	3	4092.5809	0.00048
4	1	4	3	1	3	3991.5112	-0.00285
4	1	3	3	1	2	4208.1919	0.00953
5	0	5	4	0	4	5108.9575	0.00424
6	0	6	5	0	5	6120.9114	-0.00263
6	1	6	5	1	5	5982.9328	-0.00225
6	1	5	5	1	4	6307.4843	-0.00440

7 1 7 6 1 6 6	5976.9197	0.00136
---------------	-----------	---------

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	3	2	0	2		-0.00513
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							3077.9018	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	3	2	1	2	2999.0595	-0.00726
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	1	2	2	1	1	3163.0065	-0.00369
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0	4	3	0	3	4099.5522	-0.00362
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	1	4	3	1	3	3997.6952	0.00113
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	3	3	1	2	4216.2409	0.00159
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0	5	4	0	4	5117.5418	0.00161
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	5	4	1	4	4995.4473	0.00670
	5	1	4	4	1	3	5268.4844	-0.00476
6 1 6 5 1 5 5992.1246 0.00255 6 1 5 5 1 4 6319.4842 0.00698 7 1 7 6 1 6 6987.5745 -0.00257	6	0	6	5	0	5	6131.0277	-0.00083
6 1 5 5 1 4 6319.4842 0.00698 7 1 7 6 1 6 6987.5745 -0.00257	6	1	6	5	1	5	5992.1246	0.00255
7 1 7 6 1 6 6987.5745 -0.00257	6	1	5	5	1	4	6319.4842	0.00698
	7	1	7	6	1	6	6987.5745	-0.00257

Table S17. X. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{9}$ isotopologue of conformer **Eq-C** of **perillaldehyde**.

Table S17. XI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{10}$ isotopologue of conformer **Eq-C** of **perillaldehyde**.

J'	<i>K</i> '.1	<i>K</i> ' ₊₁	J"	<i>K</i> "1	K''_{+1}	ν_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2		0.00335
						3079.9457	
3	1	3	2	1	2	3001.4800	-0.00300
3	1	2	2	1	1	3164.5350	-0.00126
4	0	4	3	0	3	4102.3539	-0.00413
4	1	4	3	1	3	4000.9353	-0.00187
4	1	3	3	1	2	4218.2944	-0.00274
5	0	5	4	0	4	5121.1861	0.00315
5	1	5	4	1	4	4999.5213	-0.00661
5	1	4	4	1	3	5271.1026	0.00301
6	1	6	5	1	5	5997.0670	-0.00701
6	1	5	5	1	4	6322.6664	-0.00125
6	0	6	5	0	5	6135.5950	-0.00493
7	1	7	6	1	6	6993.4267	0.01027

	A A	v						
J'	K'1	<i>K</i> ' ₊₁	J"	<i>K</i> "1	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}	⁹ 7 /8
2	1	2	1	1	1		0.00672	
						2023.6739		1
2	0	2	1	0	1	2086.5884	0.00111	6 2
2	1	1	1	1	0	2152.1351	0.00497	
3	0	3	2	0	2	3126.6031	-0.00141	5
3	1	3	2	1	2	3034.6869	-0.00128	4
3	2	2	2	2	1	3131.8440	-0.00173	
3	2	1	2	2	0	3137.0947	0.00591	10
3	1	2	2	1	1	3227.3650	-0.00112	0
4	1	4	3	1	3	4044.7551	-0.00222	
4	0	4	3	0	3	4162 7083	-0 00294	
4	1	3	3	1	2	4301 5827	-0 00094	
5	1	5	4	1	4	5053 5932	-0.00243	
5	0	5	4	0	4	5193 6691	-0.00271	
5	1	4	4	ı 1	3	5374 4028	-0.00074	
6	1	6	5	1	5	6060 9538	-0.00210	
6	0	6	5	0	5	6218 3669	-0.00320	
6	1	5	5	1	<u>ј</u>	6445 4124	0.00019	
7	1	5 7	6	1	т 6	7066 6270	-0.00019	
7	1	7	6	1	6	7000.0270	-0.00220	
7	1	6	6	1	5	7517 1780	-0.00232	
1	1	0	0	1	2	/ 174 7704	-0.00378	
4	2	3	2	2	2 1	41/4.//94	0.00701	
4	2	2	5	2	1	410/.0000 5016 0464	0.00390	
5	2	4	4	2	2 2	5210.8404	0.02290	
5	2	5	4	2	2 4	5242.8785	-0.01307	
6 7	2	5	5	2	4	6257.7975	0.01631	
/	2	6	6	2	5	/29/.438/	0.00962	
/	2	5	6	2	4	/369.1225	-0.008/8	
1	1	1	0	0	0	33/0.5118	-0.01230	
2	l	2	1	0	1	4350.2338	-0.00/83	
3	l	3	2	0	2	5298.3357	-0.00682	
4	l	4	3	0	3	6216.4887	-0.00663	
5	1	5	4	0	4	7107.3740	-0.00572	
6	1	6	5	0	5	7974.6623	-0.00150	
5	0	5	4	1	4	3139.8910	0.00328	
6	0	6	5	1	5	4304.6670	0.00481	
7	0	7	6	1	6	5479.6075	-0.00341	
8	0	8	7	1	7	6658.6854	0.00130	
1	1	0	1	0	1	2390.8107	0.00484	
2	1	1	2	0	2	2456.3511	0.00240	
3	1	2	3	0	3	2557.1141	0.00378	
4	1	3	4	0	4	2695.9860	0.00328	
8	1	7	8	0	8	3716.4125	-0.00590	
9	1	8	9	0	9	4111.5241	-0.00445	
10	1	9	10	0	10	4570.8790	-0.00019	
11	1	10	11	0	11	5096.4959	0.00379	
9	2	7	9	1	8	6096.3635	-0.00454	
8	2	6	8	1	7	6219.4177	-0.00072	
7	2	5	7	1	6	6358.1757	0.00164	
6	2	4	6	1	5	6503.2011	0.00565	
5	2	3	5	1	4	6645.5118	-0.00541	
4	2	2	4	1	3	6777.0419	0.01272	
3	2	1	3	1	2	6890.7619	0.00519	
2	2	0	2	1	1	6981.0208	-0.01324	

Table S18. I Measured frequencies and residuals (in MHz) for the rotational transitions of the conformer Eq-a of perillaldehyde.

2	2	1	2	1	2	7172.4217	0.00497
3	2	2	3	1	3	7269.5766	0.00231
4	2	3	4	1	4	7399.6052	0.01585
5	2	4	5	1	5	7562.8138	-0.00342
6	2	5	6	1	6	7759.6423	-0.00022
7	2	6	7	1	7	7990.4343	-0.00810

Table S18. II. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_1$ isotopologue of conformer **Eq-a** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
4	0	4	3	0	3		0.00572
						4157.5257	
4	1	4	3	1	3	4039.9126	-0.00790
4	1	3	3	1	2	4295.9060	-0.00321
5	0	5	4	0	4	5187.2423	0.00031
5	1	4	4	1	3	5367.3271	0.00037
6	1	6	5	1	5	6053.7437	0.00603
6	0	6	5	0	5	6210.7370	-0.00167
3	1	3	2	1	2	3031.0541	0.00036
3	0	3	2	0	2	3122.6744	-0.00858
3	1	2	2	1	1	3223.1085	0.00555

Table S18. III. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_2$ isotopologue of conformer **Eq-a** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
4	1	4	3	1	3		0.00628
						4041.1250	
4	0	4	3	0	3	4159.2496	0.00622
4	1	3	3	1	2	4298.5717	-0.00678
5	1	5	4	1	4	5049.0130	-0.00271
5	0	5	4	0	4	5189.2126	0.00905
6	1	6	5	1	5	6055.4146	-0.00123
6	0	6	5	0	5	6212.8244	0.00403
7	1	7	6	1	6	7060.1041	-0.00440
7	0	7	6	0	6	7229.1828	-0.00580

Table S18. IV. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_3$ isotopologue of conformer **Eq-a** of **perillaldehyde**.

J'	<i>K</i> '-1	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
4	1	4	3	1	3		0.00361
						4036.3431	
4	0	4	3	0	3	4154.8310	-0.00249
4	1	3	3	1	2	4294.6800	0.00643
5	1	5	4	1	4	5043.0325	0.00575
5	0	5	4	0	4	5183.6325	0.00372
5	1	4	4	1	3	5365.7110	-0.00038
6	1	6	5	1	5	6048.2070	-0.00104
7	1	7	6	1	6	7051.6675	-0.00430
3	0	3	2	0	2	3120.7820	-0.00741
3	1	2	2	1	1	3222.2025	-0.00569

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
4	1	4	3	1	3		0.00141
						4032.6596	
4	0	4	3	0	3	4150.0042	-0.00218
4	1	3	3	1	2	4288.0317	-0.00026
5	1	5	4	1	4	5038.4966	-0.00162
5	1	4	4	1	3	5357.4983	0.00392
5	0	5	4	0	4	5177.8987	-0.00293
6	1	6	5	1	5	6042.8765	0.00016
6	1	5	5	1	4	6425.1752	0.00770
7	0	7	6	0	6	7214.2172	0.00042
7	1	7	6	1	6	7045.5859	0.00052
3	1	3	2	1	2	3025.6069	0.00584
3	0	3	2	0	2	3117.0170	-0.00627
3	1	2	2	1	1	3217.1735	-0.01508

Table S18. V. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_4$ isotopologue of conformer **Eq-a** of **perillaldehyde**.

Table S18. VI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_5$ isotopologue of conformer **Eq-a** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
4	1	4	3	1	3		-0.00051
						4035.2945	
4	0	4	3	0	3	4154.3203	-0.00242
4	1	3	3	1	2	4295.0067	-0.00366
5	1	5	4	1	4	5041.6808	-0.00607
5	0	5	4	0	4	5182.8385	-0.00791
5	1	4	4	1	3	5366.1002	0.00778
6	1	6	5	1	5	6046.5595	0.00738
6	0	6	5	0	5	6204.8975	-0.00197
6	1	5	5	1	4	6435.2942	-0.00033
3	1	3	2	1	2	3027.6342	0.00364
3	0	3	2	0	2	3120.4706	-0.00417
3	1	2	2	1	1	3222.4791	0.00027
7	0	7	6	0	6	7219.5713	0.00397

Table S18. VII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_6$ isotopologue of conformer **Eq-a** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> "1	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
5	1	5	4	1	4		0.00150
						5045.1754	
5	0	5	4	0	4	5186.6574	-0.00406
6	1	5	5	1	4	6440.5646	0.00308
6	0	6	5	0	5	6209.3759	-0.01119
4	0	4	3	0	3	4157.4161	-0.00970
3	1	3	2	1	2	3029.7445	0.00524
3	0	3	2	0	2	3122.8405	0.00812
7	0	7	6	0	6	7224.6945	0.00935

4 1 4 3 1 3 4038.0955 -0.00	4	1	4	3	1	3	4038.0955	-0.0013
-----------------------------	---	---	---	---	---	---	-----------	---------

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
4	1	4	3	1	3		0.00243
						4017.6479	
4	0	4	3	0	3	4134.0977	-0.00257
4	1	3	3	1	2	4270.8589	-0.00285
5	1	5	4	1	4	5019.7731	0.00005
5	1	4	4	1	3	5336.0825	0.00407
6	1	6	5	1	5	6020.4608	-0.00272
6	0	6	5	0	5	6176.1934	0.00188
6	1	5	5	1	4	6399.5354	-0.00418
3	1	3	2	1	2	3014.3244	0.00251
3	0	3	2	0	2	3105.0117	-0.00112
3	1	2	2	1	1	3204.2955	0.00579
7	0	7	6	0	6	7187.2168	-0.00316

Table S18. VIII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_7$ isotopologue of conformer **Eq-a** of **perillaldehyde**.

Table S18. IX. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_8$ isotopologue of conformer **Eq-a** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
4	1	4	3	1	3		-0.00387
						3998.0038	
4	0	4	3	0	3	4113.9422	-0.00036
5	1	5	4	1	4	4995.2325	0.00217
5	1	4	4	1	3	5310.1893	0.00140
6	1	6	5	1	5	5991.0204	0.00149
6	0	6	5	0	5	6146.0022	-0.00187
6	1	5	5	1	4	6368.4831	0.00574
3	0	3	2	0	2	3089.8836	-0.00254
7	0	7	6	0	6	7152.0417	0.00164
7	1	6	6	1	5	7424.5678	-0.00527

Table S18. X. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_9$ isotopologue of conformer **Eq-a** of **perillaldehyde**.

J'	<i>K</i> '-1	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
4	1	4	3	1	3		0.00568
						3996.5733	
5	1	4	4	1	3	5309.9728	-0.00086
6	1	6	5	1	5	5988.7650	-0.00079
6	0	6	5	0	5	6144.1808	-0.00138
6	1	5	5	1	4	6368.1558	-0.00089
7	0	7	6	0	6	7149.6386	-0.00013
7	1	6	6	1	5	7424.1139	0.00672
3	0	3	2	0	2	3089.2341	-0.00885
3	1	2	2	1	1	3188.6594	-0.00655

J'	<i>K</i> ' ₋₁	K'_{+1}	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
4	1	4	3	1	3		0.00013
						4003.6653	
4	0	4	3	0	3	4119.4654	-0.00159
4	1	3	3	1	2	4255.3346	0.00526
5	1	5	4	1	4	5002.3295	0.00472
5	0	5	4	0	4	5140.0164	0.00517
5	1	4	4	1	3	5316.7021	0.00817
6	1	6	5	1	5	5999.5583	-0.00550
6	0	6	5	0	5	6154.5451	0.00614
7	0	7	6	0	6	7162.1674	-0.00296
7	1	6	6	1	5	7433.7753	-0.01262
3	1	3	2	1	2	3003.8177	-0.00593
3	0	3	2	0	2	3093.9900	0.00584

Table S18. XI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{10}$ isotopologue of conformer **Eq-a** of **perillaldehyde**.

		maracity ac	•				
J'	K'_1	<i>K</i> ' ₊₁		<i>K"</i> ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2777.6176	-0.00318
2	1	1	1	1	0	2810.0460	-0.00242
2	1	2	1	1	1	2746.4422	0.00250
3	0	3	2	0	2	4164.8783	0.00287
3	1	3	$\overline{2}$	1	$\frac{1}{2}$	4119.2667	-0.00040
3	1	2	2	1	1	4214 6702	-0.00244
3	2	2	2	2	1	4167 3788	0.00387
3	2	1	2	2	0	4169 8494	-0.00113
<u>з</u>	0	л Д	23	0	3	5550 2715	-0.00115
	1		3	1	3	5401 6354	0.00134
-+	1		2	1	2	5618 8028	0.00134
4	1	3	2	1	2	5555 0012	-0.00248
4	2	3	3	2	ے 1	5553.9915	-0.00992
4	2	2	3	2	1	5562.1800	0.00013
4	3	2	3	3	1	5557.7565	0.01744
4	5		5	5	0	5557.7565	-0.02/78
5	0	5	4	0	4	6933.2220	0.00041
5	1	5	4	1	4	6863.4088	0.00443
5	1	4	4	1	3	/022.2668	-0.00118
5	2	4	4	2	3	6944.2031	0.00284
5	3	3	4	3	2	6947.7508	0.07399
5	3	2	4	3	1	6947.7508	-0.08420
1	1	1	0	0	0	2598.0696	-0.00375
1	1	0	0	0	0	2629.8836	0.00589
2	1	2	1	0	1	3955.3860	-0.00520
2	1	1	1	0	1	4050.7959	-0.00838
3	1	3	2	0	2	5297.0321	-0.00542
3	1	2	2	0	2	5487.8527	-0.00344
4	1	4	3	0	3	6623.7976	0.00146
5	1	5	4	0	4	7936.9262	-0.00195
3	0	3	2	1	2	2987.1071	0.00208
4	0	4	3	1	3	4418.1157	0.00542
5	Ō	5	4	1	4	5859 6986	0.00079
6	Ő	6	5	1	5	7309 4800	0.00178
2	° 2	1	1	1	0	6436 8786	-0.00386
2	2	0	1	1	0 0	6437 5116	0.00985
$\frac{2}{2}$	2	1	1	1	1	6468 6981	0.01128
2	$\frac{2}{2}$	n N	1	1	1	6460 3063	0.01120
2	$\frac{2}{2}$	2	י ר	1	1	770/ 2100	0.00019
2 2	2	ے 1	2	1 1	1	7802 7102	0.01003
2 2	2		∠ 2	1 1	∠ 1	1072.1192	0.00220
2	2	U 1	2	1	1	2592 (207	0.0000/
5	2		5	1	2	3382.630/	-0.00052
2	2	5	2	1	4	3460.2629	0.01142
6	2	4	6	l	5	3388.6805	0.00783
2	2		2	0	2	4899.9963	-0.02124
3	2	2	3	1	3	3770.3607	0.00575
4	3	1	4	2	2	6117.0550	-0.00157
4	3	2	4	2	3	6126.2753	-0.00205
5	3	3	5	2	4	6129.7555	0.00160
5	3	2	5	2	3	6108.3863	0.00938
6	3	3	6	2	4	6093.4132	-0.01260
2	2	1	2	1	2	3722.2384	-0.00872
3	2	2	3	1	2	3579.5196	-0.01673
4	2	3	4	1	4	3834.7348	0.01268

Table S19. I. Measured frequencies and residuals (in MHz) for the rotational transitions of the conformer **Ax-a** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
4	1	4	3	1	3		-0.00218
						5464.1020	
4	0	4	3	0	3	5517.1513	-0.00577
4	1	3	3	1	2	5578.3078	-0.00664
5	1	5	4	1	4	6829.1971	0.00682
5	0	5	4	0	4	6892.6554	0.00091
5	1	4	4	1	3	6971.8834	0.00611
2	0	2	1	0	1	2760.6206	0.00529
3	1	3	2	1	2	4098.5174	-0.00714
3	1	2	2	1	1	4184.2131	0.01119

Table S19. II. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_1$ isotopologue of conformer **Ax-a** of **perillaldehyde**.

Table S19. III. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_2$ isotopologue of conformer **Ax-a** of **perillaldehyde**.

			-				
J'	<i>K</i> '.1	<i>K</i> ' ₊₁	J"	<i>K</i> "1	K''_{+1}	ν_{obs}	v_{obs} - v_{calc}
4	1	4	3	1	3		0.00633
						5461.1200	
4	0	4	3	0	3	5518.8194	0.00036
4	1	3	3	1	2	5586.0650	0.00328
5	0	5	4	0	4	6894.0688	-0.00123
5	1	5	4	1	4	6825.2920	-0.00137
5	1	4	4	1	3	6981.3870	0.00465
3	1	3	2	1	2	4096.3545	-0.00331
3	1	2	2	1	1	4190.0845	-0.00928
2	0	2	1	0	1	2761.7984	-0.00613

Table S19. IV. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_3$ isotopologue of conformer **Ax-a** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> "1	<i>K</i> " ₊₁	ν_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2	4151.8443	-0.00206
3	1	2	2	1	1	4200.9201	0.00116
4	0	4	3	0	3	5532.9653	-0.00540
4	1	4	3	1	3	5475.1018	-0.00681
4	1	3	3	1	2	5600.4872	0.00083
5	0	5	4	0	4	6911.7083	0.00210
5	1	5	4	1	4	6842.7815	0.00717
5	1	4	4	1	3	6999.3988	0.00038

Table S19. V. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_4$ isotopologue of conformer **Ax-a** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
5	0	5	4	0	4		0.00234
						6913.3970	
5	1	5	4	1	4	6838.8391	-0.00899
5	1	4	4	1	3	7010.8227	-0.00230
4	0	4	3	0	3	5535.1038	-0.00215
4	1	4	3	1	3	5472.1619	0.00687

4	1	3	3	1	2	5609.8445	0.00122
3	1	3	2	1	2	4104.7615	0.00362
2	0	2	1	0	1	2770.5154	0.00506

Table S19. VI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_5$ isotopologue of conformer **Ax-a** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
5	0	5	4	0	4		-0.00074
						6915.7022	
5	1	5	4	1	4	6842.5956	0.00024
5	1	4	4	1	3	7010.5273	0.00753
4	0	4	3	0	3	5536.7314	0.00208
4	1	4	3	1	3	5475.1014	0.00184
4	1	3	3	1	2	5609.5287	-0.00867
3	0	3	2	0	2	4154.9907	-0.00724
3	1	2	2	1	1	4207.7962	0.00184
2	0	2	1	0	1	2771.1700	0.00003

Table S19. VII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_6$ isotopologue of conformer **Ax-a** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> "1	K''_{+1}	ν_{obs}	v_{obs} - v_{calc}
4	0	4	3	0	3	5535.5198	-0.00275
4	1	4	3	1	3	5477.0922	-0.00012
4	1	3	3	1	2	5603.7553	-0.00593
5	1	5	4	1	4	6845.2380	0.00121
5	1	4	4	1	3	7003.4800	0.00734
3	1	3	2	1	2	4108.3548	-0.00138
3	1	2	2	1	1	4203.3800	-0.00388
2	0	2	1	0	1	2770.2282	0.00412

Table S19. VIII. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{7}$ isotopologue of conformer **Ax-a** of **perillaldehyde**.

J'	K'-1	<i>K</i> ' ₊₁	J"	<i>K</i> "-1	<i>K</i> " ₊₁	v_{obs}	v_{obs} - v_{calc}
4	0	4	3	0	3	5541.6708	0.02662
4	1	3	3	1	2	5611.0210	0.00128
5	0	5	4	0	4	6922.3045	0.00058
5	1	5	4	1	4	6851.8994	0.00374
5	1	4	4	1	3	7012.4951	-0.00322
3	1	3	2	1	2	4112.3892	-0.00688
3	0	3	2	0	2	4158.4638	-0.00334
3	1	2	2	1	1	4208.8541	0.00487
2	1	2	1	1	1	2741.8692	0.00275

Table S19. IX. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_8$ isotopologue of conformer **Ax-a** of **perillaldehyde**.

1 0			I				
J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
5	0	5	4	0	4		0.00425
						6920.2647	
5	1	5	4	1	4	6854.4265	0.00669
5	1	4	4	1	3	7003.1837	-0.01170
4	0	4	3	0	3	5539.4938	-0.00273

4	1	4	3	1	3	5484.3561	0.00724
4	1	3	3	1	2	5603.4443	0.00644
3	0	3	2	0	2	4156.5410	-0.01205
3	1	3	2	1	2	4113.7335	-0.01117
3	1	2	2	1	1	4203.0967	0.01306
2	0	2	1	0	1	2771.9466	-0.01075
2	1	2	1	1	1	2742.7270	-0.00262
2	1	1	1	1	0	2802.3018	0.00863

Table S19. X. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{9}$ isotopologue of conformer **Ax-a** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	K'_{+1}	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
4	0	4	3	0	3		-0.00289
						5492.2868	
4	1	3	3	1	2	5558.8262	0.00328
5	0	5	4	0	4	6861.0071	0.00060
5	1	5	4	1	4	6792.7806	0.00503
5	1	4	4	1	3	6947.3605	-0.00019
3	0	3	2	0	2	4121.2594	-0.00435
3	1	3	2	1	2	4076.8138	-0.00796
3	1	2	2	1	1	4169.6571	0.00458
2	0	2	1	0	1	2748.4961	0.00952
2	1	1	1	1	0	2780.0075	-0.01231

Table S19. XI. Measured frequencies and residuals (in MHz) for the rotational transitions of the ${}^{13}C_{10}$ isotopologue of conformer **Ax-a** of **perillaldehyde**.

J'	<i>K</i> ' ₋₁	<i>K</i> ' ₊₁	J"	<i>K</i> " ₋₁	K''_{+1}	v_{obs}	v_{obs} - v_{calc}
4	0	4	3	0	3	5475.9874	0.00127
4	1	4	3	1	3	5416.4561	-0.00372
4	1	3	3	1	2	5545.7615	-0.01372
5	1	5	4	1	4	6769.3981	0.00193
5	1	4	4	1	3	6930.9367	0.00384
3	0	3	2	0	2	4109.2388	-0.00206
3	1	3	2	1	2	4062.9097	0.00383
3	1	2	2	1	1	4159.9343	0.01397
2	0	2	1	0	1	2740.5638	-0.00567

		E	q-A					
	Exp.	MP2	B3LYP	B3LYP-D3BJ				
A ^a (MHz)	2237.2055(11) ^b	2208.1 (-1.3%) ^c	2217.2 (-0.9%)	2222.2 (-0.7%)				
B (MHz)	656.27834(29)	653.1 (-0.5%)	645.9 (-1.6%)	650.3 (-0.9%)				
C (MHz)	579.64159(29)	576.7 (-0.5%)	570.6 (-1.6%)	573.9 (-1.0%)				
		E	q-C					
-	Exp.	MP2	B3LYP	B3LYP-D3BJ				
A (MHz)	2256.91513(93)	2225.1 (-1.4%)	2238.7 (-0.8%)	2244.1 (-0.6%)				
B (MHz)	672.90566(26)	666.3 (-1.0%)	660.0 (-1.9%)	665.7 (-1.1%)				
C (MHz)	554.50351(25)	554.7 (0.0%)	547.0 (-1.4%)	549.0 (-1.0%)				
	Eq-a							
-	Exp.	MP2	B3LYP	B3LYP-D3BJ				
A (MHz)	2212.7903(13)	2177.3 (-1.6%)	2194.5 (-0.8%)	2200.2 (-0.6%)				
B (MHz)	684.52333(27)	676.3 (-1.2%)	670.3 (-2.1%)	678.1 (-0.9%)				
C (MHz)	554.73193(25)	557.5 (0.5%)	548.5 (-2.1%)	549.0 (-1.0%)				
		Α	x-a					
-	Exp.	MP2	B3LYP	B3LYP-D3BJ				
A (MHz)	1621.8211(18)	1572.2 (-3.1%)	1662.7 (2.5%)	1626.7 (0.3%)				
B (MHz)	904.92320(51)	928.1 (2.6%)	845.6 (-6.6%)	881.9 (-2.5%)				
C (MHz)	780.45872(54)	799.5 (2.4%)	736.7 (-5.6%)	765.3 (-1.9%)				
		Α	x-C					
-	Exp.	MP2	B3LYP	B3LYP-D3BJ				
A (MHz)	1687.7984(26)	1596.3 (-5.4%)	1731.8 (2.6%)	1686.4 (-0.1%)				
B (MHz)	878.27624(98)	907.6 (3.3%)	820.8 (-6.5%)	853.0 (-2.9%)				
C (MHz)	771.3069(12)	803.5 (4.2%)	723.6 (-6.2%)	753.7 (-2.3%)				

Table S20. Experimental and theoretical vibrationally-corrected rotational constants (A_0, B_0, C_0) of the observed axial conformers of carvone, and their percentage changes.

^a A, B and C are the rotational constants. ^b Standard error in parentheses in units of the last digit. ^c Deviation from the experiment; calculated as $(A_{calc} - A_{exp})/A_{exp} \ge 100\%$

	1				
	¹³ C ₁	¹³ C ₂	¹³ C ₃	$^{13}C_{4}$	¹³ C ₅
A ^a (MHz)	2216.2049(29) ^e	2213.2408(15)	2234.6806(27)	2229.8422(36)	2226.0685(25)
B (MHz)	656.11051(37)	655.28014(17)	653.16945(33)	654.69223(46)	656.21796(32)
C (MHz)	578.14434(29)	577.25893(13)	577.04735(27)	577.91183(37)	578.95787(26)
$\Delta_J(kHz)$	[0.0131]	[0.0131]	[0.0131]	[0.0131]	[0.0131]
Δ_{K} (kHz)	[-1.77]	[-1.77]	[-1.77]	[-1.77]	[-1.77]
$\Delta_{JK}(kHz)$	[0.268]	[0.268]	[0.268]	[0.268]	[0.268]
δ_K (kHz)	[-1.201]	[-1.201]	[-1.201]	[-1.201]	[-1.201]
$a/b/c^{\mathrm{b}}$	y/y/n	y/y/n	y/y/n	y/y/n	y/y/n
σ^{ϵ} (kHz)	5	5	5	6	4
N^{d}	23	18	22	20	17
	¹³ C ₆	¹³ C ₇	¹³ C ₉	$^{13}C_{10}$	¹³ C ₁₁
A ^a (MHz)	2235.9379(40)	2232.9374(19)	2236.9185(40)	2222.1994(31)	2222.4155(31)
B (MHz)	655.48650(46)	646.53932(23)	651.36113(46)	647.69837(38)	646.30090(40)
C (MHz)	579.09831(36)	571.77644(19)	575.81765(36)	573.87914(30)	572.81563(30)
$\Delta_J(kHz)$	[0.0131]	[0.0131]	[0.0131]	[0.0131]	[0.0131]
Δ_{K} (kHz)	[-1.77]	[-1.77]	[-1.77]	[-1.77]	[-1.77]
$\Delta_{JK}(kHz)$	[0.268]	[0.268]	[0.268]	[0.268]	[0.268]
δ_K (kHz)	[-1.201]	[-1.201]	[-1.201]	[-1.201]	[-1.201]
$a/b/c^{\mathrm{b}}$	y/y/n	y/y/n	y/y/n	y/y/n	y/y/n
σ^{c} (kHz)	6	3	6	5	5
N^{d}	16	22	22	21	20

Table S21. Experimental rotational constants of all the singly-substituted ¹³C isotopologues of conformer Eq-A of carvone.

^a A, B and C are the rotational constants, $\Delta_{J_c} \Delta_{K_c} \Delta_{JK_c} \delta_{J}$ are the quartic centrifugal distortion constants. ^b *a*, *b*, and *c* are the type of transitions observed. ^c σ is the rms deviation of the fit.

^d N is the number of the fitted transitions.

••••••••	-q = o				
	¹³ C ₁	¹³ C ₂	¹³ C ₃	$^{13}C_4$	$^{13}C_{5}$
A ^a (MHz)	2236.9011(32) ^e	2232.3569(35)	2253.9185(28)	2249.8089(38)	2244.4538(34)
B (MHz)	672.57409(45)	671.86407(51)	669.66312(37)	671.11781(51)	672.89089(44)
C (MHz)	553.281489(31)	552.42694(35)	552.12016(25)	552.86588(31)	553.78923(30)
$\Delta_J(kHz)$	[0.0118]	[0.0118]	[0.0118]	[0.0118]	[0.0118]
Δ_{K} (kHz)	[-0.96]	[-0.96]	[-0.96]	[-0.96]	[-0.96]
$\Delta_{JK}(kHz)$	[0.054]	[0.054]	[0.054]	[0.054]	[0.054]
$a/b/c^{\mathrm{b}}$	y/y/n	y/y/n	y/y/n	y/y/n	y/y/n
σ^{c} (kHz)	6	6	5	6	6
N^{d}	21	21	22	22	21
	$^{13}C_{6}$	¹³ C ₇	¹³ C ₉	¹³ C ₁₀	¹³ C ₁₁
A ^a (MHz)	2256.2437(47)	2251.0313(26)	2256.6642(35)	2244.4036(27)	2239.4705(19)
B (MHz)	672.11144(62)	662.78793(35)	667.75847(49)	662.81593(36)	664.99424(27)
C (MHz)	554.00790(42)	547.27768(22)	551.00358(34)	547.50127(23)	548.53497(17)
Δ_J (kHz)	[0.0118]	[0.0118]	[0.0118]	[0.0118]	[0.0118]
Δ_{K} (kHz)	[-0.96]	[-0.96]	[-0.96]	[-0.96]	[-0.96]
$\Delta_{JK}(kHz)$	[0.054]	[0.054]	[0.054]	[0.054]	[0.054]
$a/b/c^{b}$	y/y/n	y/y/n	y/y/n	y/y/n	y/y/n
σ^{c} (kHz)	8	5	7	5	3
N^{d}	19	22	23	21	22

Table S22. Experimental rotational constants of all the singly-substituted ¹³C isotopologues of conformer Eq-C of carvone.

^a A, B and C are the rotational constants, $\Delta_{J_c} \Delta_{K_c} \Delta_{JK_c}$ are the quartic centrifugal distortion constants. ^b *a*, *b*, and *c* are the type of transitions observed. ^c σ is the rms deviation of the fit. ^d N is the number of the fitted transitions.

Comoniter	Eq II of minomene.				
	¹³ C ₁	$^{13}C_{2}$	¹³ C ₃	$^{13}C_{4}$	$^{13}C_{5}$
A ^a (MHz)	3027.4468(29) ^e	3031.2822(33)	3058.0046(21)	3028.4010(17)	3029.7191(26)
B (MHz)	717.01722(63)	714.88413(77)	712.42056(46)	714.89032(39)	717.01909(45)
C (MHz)	677.78867(59)	676.04278(72)	675.10033(44)	675.90507(37)	677.90878(54)
$\Delta_J(kHz)$	[0.0165]	[0.0165]	[0.0165]	[0.0165]	[0.0165]
$\Delta_{JK}(kHz)$	[0.088]	[0.088]	[0.088]	[0.088]	[0.088]
$a/b/c^{\mathrm{b}}$	y/y/y	y/y/y	y/y/y	y/y/y	y/y/y
σ^{c} (kHz)	6	8	4	4	6
N^{d}	13	13	13	14	12
	$^{13}C_{6}$	¹³ C ₇	¹³ C ₉	¹³ C ₁₀	$^{13}C_{11}$
A ^a (MHz)	3055.7672(22)	3057.7943(30)	3057.6458(27)	3029.5008(30)	3031.9549(32)
B (MHz)	716.45126(41)	703.80743(58)	712.15734(58)	708.03600(64)	706.42374(64)
C (MHz)	678.83536(36)	667.36886(52)	674.88175(55)	672.50257(79)	670.93383(62)
$\Delta_J(kHz)$	[0.0165]	[0.0165]	[0.0165]	[0.0165]	[0.0165]
$\Delta_{JK}(kHz)$	[0.088]	[0.088]	[0.088]	[0.088]	[0.088]
$a/b/c^{b}$	y/y/y	y/y/y	y/y/y	y/y/y	y/y/y
σ^{c} (kHz)	4	6	6	6	6
N^{d}	13	14	13	12	11

Table S23. Experimental rotational constants of all the singly-substituted ¹³C isotopologues of conformer Eq-A of limonene

^a A, B and C are the rotational constants, $\Delta_{J_i} \Delta_{JK_j}$ are the quartic centrifugal distortion constants.

^b a, b, and c are the type of transitions observed.

 $^{\circ}\sigma$ is the rms deviation of the fit

^d N is the number of the fitted transitions

^e Standard error in parentheses in units of last digit

comornier	Eq-C of infonctic.				
	¹³ C ₁	$^{13}C_{2}$	¹³ C ₃	¹³ C ₄	$^{13}C_{5}$
A ^a (MHz)	3025.34(70) ^e	3026.29(61)	3053.71(66)	3024.11(64)	3022.21(77)
B (MHz)	741.9389(16)	739.80323(85)	737.1796(12)	739.55220(96)	742.1881(12)
C (MHz)	645.59564(87)	643.94765(75)	642.89046(79)	643.66269(78)	645.31447(95)
$\Delta_J(kHz)$	[0.0222]	[0.0222]	[0.0222]	[0.0222]	[0.0222]
$a/b/c^{\mathrm{b}}$	y/n/n	y/n/n	y/n/n	y/n/n	y/n/n
σ^{c} (kHz)	7	6	6	6	7
N^{d}	8	9	8	8	8
	¹³ C ₆	¹³ C ₇	¹³ C ₉	¹³ C ₁₀	¹³ C ₁₁
A ^a (MHz)	3050.75(68)	3052.60(46)	3053.11(74)	3026.05(50)	3026.1(12)
B (MHz)	741.5618(14)	727.9542(11)	736.9390(14)	732.11563(67)	733.29576(87)
C (MHz)	646.31297(82)	635.8627(15)	642.7359(14)	638.42457(70)	639.32891(93)
$\Delta_J(kHz)$	[0.0222]	[0.0222]	[0.0222]	[0.0222]	[0.0222]
$a/b/c^{\mathrm{b}}$	y/n/n	y/n/n	y/n/n	y/n/n	y/n/n
σ^{c} (kHz)	6	6	6	4	4
N^{d}	7	6	7	7	6

Table S24. Experimental rotational constants of all the singly-substituted ¹³C isotopologues of conformer **Eq-C** of **limonene**

^a A, B and C are the rotational constants, Δ_J is the quartic centrifugal distortion constants. ^b *a*, *b*, and *c* are the type of transitions observed.

 $^{\circ}\sigma$ is the rms deviation of the fit

^d N is the number of the fitted transitions

•••••••	-1 p	-5			
	¹³ C ₁	¹³ C ₂	¹³ C ₃	$^{13}C_4$	$^{13}C_{5}$
A ^a (MHz)	2932.21(98) ^e	2909.8(14)	2910.7(11)	2933.3(16)	2901.5(12)
B (MHz)	535.80964(28)	536.45813(44)	535.83714(37)	534.90459(51)	536.02758(50)
C (MHz)	509.59387(28)	509.46228(48)	508.89567(40)	508.67773(50)	508.79936(43)
Δ_J (kHz)	[0.0136]	[0.0136]	[0.0136]	[0.0136]	[0.0136]
$\Delta_{JK}(kHz)$	[0.078]	[0.078]	[0.078]	[0.078]	[0.078]
$a/b/c^{b}$	y/n/n	y/n/n	y/n/n	y/n/n	y/n/n
σ^{c} (kHz)	4	6	5	7	6
N^{d}	14	14	13	15	14
	$^{13}C_{6}$	¹³ C ₇	$^{13}C_{8}$	¹³ C ₉	¹³ C ₁₀
A ^a (MHz)	2904.5(14)	2930.8 (14)	2910.7(13)	2904.2(15)	2927.1(17)
B (MHz)	536.39022(43)	532.73519(50)	529.12719(43)	530.21501(43)	530.87589(50)
C (MHz)	509.14301(43)	506.75216(43)	504.20357(37)	505.20653(47)	504.98835(54)
$\Delta_J(kHz)$	[0.0136]	[0.0136]	[0.0136]	[0.0136]	[0.0136]
$\Delta_{JK}(kHz)$	[0.078]	[0.078]	[0.078]	[0.078]	[0.078]
$a/b/c^{\mathrm{b}}$	y/n/n	y/n/n	y/n/n	y/n/n	y/n/n
σ^{c} (kHz)	6	6	5	6	7
N^{d}	14	14	14	14	13

Table S25. Experimental rotational constants of all the singly-substituted ¹³C isotopologues of conformer **Eq-A** of **perillaldehyde**.

^a A, B and C are the rotational constants, $\Delta_{J_i} \Delta_{JK_i}$ are the quartic centrifugal distortion constants.

^b a, b, and c are the type of transitions observed.

 $^{c}\sigma$ is the rms deviation of the fit.

^d N is the number of the fitted transitions.

^e Standard error in parentheses in units of last digit

	A A	U			
	¹³ C ₁	$^{13}C_{2}$	¹³ C ₃	$^{13}C_{4}$	¹³ C ₅
A ^a (MHz)	2952.65(36) ^e	2927.97(49)	2931.58(38)	2953.49(40)	2924.38(47)
B (MHz)	546.25501(43)	546.96855(55)	546.15302(49)	545.27906(50)	546.39089(42)
C (MHz)	491.05179(54)	490.83779(99)	490.40109(58)	490.18996(57)	490.42508(48)
Δ_J (kHz)	[0.0110]	[0.0110]	[0.0110]	[0.0110]	[0.0110]
$a/b/c^{b}$	y/n/n	y/n/n	y/n/n	y/n/n	y/n/n
σ^{c} (kHz)	6	7	7	7	5
N^{d}	12	10	13	13	12
	¹³ C ₆	¹³ C ₇	¹³ C ₈	¹³ C ₉	$^{13}C_{10}$
A ^a (MHz)	2925.61(25)	2953.51(42)	2930.76(54)	2926.14(39)	2950.36(44)
B (MHz)	546.72054(22)	543.04832(67)	539.79974(56)	540.92888(38)	541.10696(41)
C (MHz)	490.76523(24)	488.41263(54)	485.61832(48)	486.27779(33)	486.75266(35)
Δ_J (kHz)	[0.0110]	[0.0110]	[0.0110]	[0.0110]	[0.0110]
$a/b/c^{b}$	y/n/n	y/n/n	y/n/n	y/n/n	y/n/n
σ^{c} (kHz)	3	7	5	4	5
N^{d}	13	12	10	13	13

Table S26. Experimental rotational constants of all the singly-substituted ¹³C isotopologues of conformer **Eq-C** of **perillaldehyde**.

^a A, B and C are the rotational constants, Δ_J is the quartic centrifugal distortion constant.

^b a, b, and c are the type of transitions observed.

 $^{\circ}\sigma$ is the rms deviation of the fit.

^d N is the number of the fitted transitions.

	1 1	•			
	¹³ C ₁	$^{13}C_{2}$	¹³ C ₃	$^{13}C_{4}$	$^{13}C_{5}$
A ^a (MHz)	2879.19(34) ^e	2859.14(24)	2859.51(54)	2879.71(24)	2850.19(19)
B (MHz)	533.32676(56)	553.75943(97)	553.32821(51)	552.30180(47)	553.46190(41)
C (MHz)	489.30499(53)	489.36902(48)	488.71899(42)	488.43398(40)	488.50673(41)
$\Delta_J(kHz)$	[0.0145]	[0.0145]	[0.0145]	[0.0145]	[0.0145]
$\Delta_{JK}(kHz)$	[0.077]	[0.077]	[0.077]	[0.077]	[0.077]
$\delta_J(kHz)$	[-0.00228]	[-0.00228]	[-0.00228]	[-0.00228]	[-0.00228]
$a/b/c^{\mathrm{b}}$	y/n/n	y/n/n	y/n/n	y/n/n	y/n/n
σ^{c} (kHz)	5	6	5	6	5
N^{d}	10	9	10	13	13
	$^{13}C_{6}$	¹³ C ₇	¹³ C ₈	¹³ C ₉	¹³ C ₁₀
A ^a (MHz)	2848.93(30)	2880.364(13)	2862.27(14)	2848.65(22)	2878.44(27)
B (MHz)	553.95349(94)	550.01454(27)	547.35704(14)	547.42664(38)	547.97186(55)
C (MHz)	488.81266(78)	486.68676(27)	484.29879(28)	484.04224(51)	485.03255(52)
Δ_J (kHz)	[0.0145]	[0.0145]	[0.0145]	[0.0145]	[0.0145]
$\Delta_{JK}(kHz)$	[0.077]	[0.077]	[0.077]	[0.077]	[0.077]
$\delta_J(kHz)$	[-0.00228]	[-0.00228]	[-0.00228]	[-0.00228]	[-0.00228]
$a/b/c^{b}$	y/n/n	y/n/n	y/n/n	y/n/n	y/n/n
σ^{c} (kHz)	7	3	3	5	6
N^{d}	9	12	10	9	12

Table S27. Experimental rotational constants of all the singly-substituted ¹³C isotopologues of conformer Eq-a of perillaldehyde.

^a A, B and C are the rotational constants, Δ_J is the quartic centrifugal distortion constant. ^b *a*, *b*, and *c* are the type of transitions observed. ^c σ is the rms deviation of the fit. ^d N is the number of the fitted transitions.

••••••••	in a or permanae	<i>j</i> 40.			
	¹³ C ₁	$^{13}C_{2}$	¹³ C ₃	$^{13}C_{4}$	$^{13}C_{5}$
A ^a (MHz)	1897.08(94) e	1917.59(63)	1912.87(56)	1897.37(51)	1904.08(54)
B (MHz)	704.562(73)	706.22539(57)	708.05727(49)	710.03181(63)	709.78026(55)
C (MHz)	676.00112(72)	674.97769(56)	676.70192(54)	675.59491(56)	676.15715(60)
$\Delta_J(kHz)$	[0.1514]	[0.1514]	[0.1514]	[0.1514]	[0.1514]
Δ_{K} (kHz)	[2.70]	[2.70]	[2.70]	[2.70]	[2.70]
$\Delta_{JK}(kHz)$	[-0.996]	[-0.996]	[-0.996]	[-0.996]	[-0.996]
$a/b/c^{\mathrm{b}}$	y/n/n	y/n/n	y/n/n	y/n/n	y/n/n
σ^{c} (kHz)	6	5	4	5	5
N^{d}	9	9	8	8	9
	¹³ C ₆	¹³ C ₇	$^{13}C_{8}$	¹³ C ₉	$^{13}C_{10}$
A ^a (MHz)	1918.7(11)	1909.80(47)	1902.4(12)	1918.31(88)	1906.3(18)
B (MHz)	708.54987(52)	709.58209(43)	708.01895(99)	702.74164(71)	701.47458(92)
C (MHz)	676.87150(50)	677.42841(47)	678.23718(98)	671.79576(86)	669.13377(89)
Δ_J (kHz)	[0.1514]	[0.1514]	[0.1514]	[0.1514]	[0.1514]
Δ_{K} (kHz)	[2.70]	[2.70]	[2.70]	[2.70]	[2.70]
$\Delta_{JK}(kHz)$	[-0.996]	[-0.996]	[-0.996]	[-0.996]	[-0.996]
$a/b/c^{\mathrm{b}}$	y/n/n	y/n/n	y/n/n	y/n/n	y/n/n
σ^{c} (kHz)	4	4	9	6	7
N^{d}	8	9	12	10	9

Table S28. Experimental rotational constants of all the singly-substituted ¹³C isotopologues of conformer Ax-a of perillaldehyde.

^a A, B and C are the rotational constants, $\Delta_{J_c} \Delta_{K_c} \Delta_{JK_c}$ are the quartic centrifugal distortion constants. ^b *a*, *b*, and *c* are the type of transitions observed. ^c σ is the rms deviation of the fit. ^d N is the number of the fitted transitions.

Structural Determination

The observed spectrum of all three terpenoids was quite intense, and therefore it was possible to measure the transitions arising from the ¹³C isotopologues of the two most stable equatorial conformers of carvone and limonene (Eq-A and Eq-C), and of all the observed conformers of perillaldehyde. Their rotational constants were obtained from the fits of the observed transitions to the same Hamiltonian used for the parent species (see Tables S7-S19). The substitution coordinates of the Eq-A and Eq-C conformers of carvone and limonene, and all conformers of perillaldehyde (see Tables S29-S36) were determined from applying the Kraitchmann equations (J. Kraitchman, Am. J. Phys., 1953, 21, 17-24; C. C. Costain, J. Chem. Phys., 1958, 29, 864-874) and the program KRA (Z. Kisiel, PROSPE-Programs for Rotational Spectroscopy. Spectrosc. from Sp. 2001, 91–106) using the experimental moments of inertia. All terpenoids have several carbon atoms placed extremely close to the inertial axes, which returned imaginary numbers when applying the Kaitchmann equations, preventing determination of their coordinates (which were fixed to zero) and introduced large uncertainties. Limonene and perillaldehyde also display a substantial number of atomic coordinates affected by large errors. The obtained absolute values of the r_s coordinates (the Kraitchmann equations do not return their signs) are compared to the theoretical ones predicted by the best performing methods, B3LYP-D3BJ and MP2.

The effective (r_0) structures for the above conformers have been determined from leastsquares fit of the experimental moments of inertia of the observed isotopologues using the program STRFIT (Z. Kisiel, PROSPE-Programs for Rotational Spectroscopy. *Spectrosc. from Sp.* **2001**, 91–106), and are presented in Tables S37-S40. Non fitted parameters were fixed to the B3LYP-D3BJ/6-311++G(d,p) values.

		r _s			B3LYP- D3BJ		MP2		
	a	<i>b</i>	<i>c</i>	а	b	С	а	b	С
C_1	0.3963(38)	1.4517(10)	0.2019(75	0.411442	-1.451698	-0.213513	0.416149	-1.456650	-0.227355
C ₂	1.0777(14)	1.56482(97)	0.102(15)	-1.081728	-1.560432	-0.112550	-1.080673	-1.569796	-0.130703
C ₃	1.91703(79)	0.5073(30)	0.020(76)	-1.920423	-0.516143	-0.001514	-1.918313	-0.511968	-0.009269
C_4	1.3668(11)	0.8660(18)	0.031(49)	-1.380137	0.869712	-0.027991	-1.368083	0.871633	-0.030250
C ₅	0.000(12)	1.0232(15)	0.2947(51)	0.110333	1.030215	-0.271825	0.113174	1.010912	-0.326843
C_6	0.9014(17)	0.089(17)	0.3475(44)	0.927670	-0.114702	0.345760	0.915310	-0.117632	0.332912
C ₇	3.40718(44)	0.6502(23)	0.140(11)	-3.409586	-0.658871	0.131070	-3.408118	-0.648543	0.134032
C ₉	2.40949(63	0.054(28)	0.1626(94	2.421846	0.056635	0.169511	2.407669	0.055449	0.176050
C ₁₀	2.95340(51	0.1995(76)	1.2294(12	2.953251	0.229104	-1.230090	2.955144	0.270365	-1.212972
C ₁₁	3.22438(47)	0.050(30)	1.2369(12	3.232926	0.053849	1.229131	3.211799	0.021215	1.255090

Table S29. Substitution coordinates of the carbon atoms of carvone Eq-A in Å.

		r _s			B3LYP- D3BJ		MP2		
	<i>a</i>	<i>b</i>	<i>c</i>	а	b	С	а	b	С
C ₁	0.4357(35)	1.3519(11)	0.4279(35	0.448225	-1.354799	-0.427455	0.394168	-1.312563	-0.468398
C ₂	1.0305(15)	1.54066(99)	0.3207(47	-1.037590	-1.536667	-0.321694	-1.096255	-1.485197	-0.363672
C ₃	1.90960(79)	0.5484(28)	0.00(57)	-1.914235	-0.553054	-0.060488	-1.960275	-0.485934	-0.066339
C ₄	1.4144(11)	0.8415(18)	0.065(23)	-1.426290	0.845501	0.076609	-1.446603	0.901068	0.102751
C ₅	0.0000(95)	1.0976(14)	0.2063(74)	0.045411	1.098666	-0.196344	0.017446	1.130664	-0.219738
C ₆	0.9059(17)	0.000(29)	0.2640(58	0.932379	-0.061965	0.257773	0.877636	-0.041717	0.249515
C ₇	3.38848(45)	0.7690(20)	0.092(16)	-3.392577	-0.772762	0.082919	-3.441324	-0.688017	0.087387
C9	2.40741(63	0.112(14)	0.112(14)	2.420100	0.156646	0.062871	2.367600	0.154737	0.076195
C ₁₀	3.30653(46	0.8668(17)	0.7243(21	3.314904	-0.861694	0.723684	3.243965	-0.883212	0.734264
C ₁₁	2.92494(52	1.1775(13)	0.6249(24	2.927157	1.174218	-0.635022	2.896703	1.170411	-0.630688

Table S30. Substitution coordinates of the carbon atoms of carvone Eq-C in Å.

Table S31. Substitution coordinates of the carbon atoms of limonene Eq-A in \AA .

		r _s		B3LYP- D3BJ			MP2		
	a	<i>b</i>	<i>C</i>	а	b	С	а	b	С
C_1	0.000(13)	1.2758(12)	0.2179(70	-0.044344	-1.277564	0.212245	-0.051237	-1.272046	0.272935
C_2	1.4523(10)	1.1996(13	0.1727(89	1.458773	-1.196348	0.177112	1.453679	-1.194504	0.230965
C ₃	2.14410(71)	0.00(18)	0.025(60)	2.151110	-0.070339	-0.016776	2.145007	-0.064622	-0.019743
C_4	1.4499(10)	1.2644(12)	0.1733(87)	1.458832	1.261303	-0.194610	1.447173	1.256900	-0.242715
C ₅	0.000(11)	1.2246(12	0.2236(68	-0.014483	1.230047	0.220284	-0.013806	1.222459	0.206887
C ₆	0.6821(22)	0.000(25)	0.3545(43)	-0.712987	-0.011867	-0.358175	-0.703515	-0.028563	-0.351544
C_7	3.64730(42)	0.035(43)	0.105(14)	3.653054	-0.047435	-0.083515	3.647998	-0.045282	-0.099363
C ₉	2.20014(69)	0.000(97)	0.143(11)	-2.212620	-0.009950	-0.150198	-2.200723	-0.016341	-0.153941
C ₁₀	2.73009(53	0.1619(94)	1.2472(12)	-2.726555	0.179363	1.254224	-2.726944	0.266286	1.231690
C ₁₁	3.03618(50)	0.151(10)	1.1941(13)	-3.046393	-0.169347	-1.180241	-3.031593	-0.243266	-1.188645

		r _s		B3LYP- D3BJ			MP2		
	<i>a</i>	<i>b</i>	<i>c</i>	а	b	С	а	b	С
C_1	0.00(11)	1.1568(85)	0.473(21)	-0.075820	-1.160729	0.471948	-0.086763	-1.156074	0.481497
C_2	1.4160(60)	1.1559(74)	0.423(21)	1.428249	-1.148877	0.401715	1.418864	-1.150310	0.417441
C ₃	2.1522(42)	0.09(10)	0.00(15)	2.158719	-0.106650	-0.003809	2.152745	-0.103405	-0.008220
C_4	1.4947(60)	1.2064(75)	0.427(21)	1.509831	1.198989	-0.399681	1.502603	1.197506	-0.415335
C_5	0.000(55)	1.3090(82)	0.150(73)	0.049391	1.301970	0.046112	0.054102	1.297262	0.064107
C_6	0.654(14)	0.180(52)	0.365(26)	-0.715414	0.019524	-0.291625	-0.707533	0.021431	-0.293086
C_7	3.6501(18)	0.198(33)	0.164(40)	3.657994	-0.158156	-0.100243	3.653477	-0.160661	-0.106005
C ₉	2.1960(46)	0.08(12)	0.174(59)	-2.211540	0.077367	-0.054822	-2.201891	0.077952	-0.066716
C_{10}	2.9980(24)	1.0784(67)	0.621(12)	-3.003455	-1.077140	-0.615778	-2.994497	-1.077753	-0.627570
C ₁₁	2.80595(81	1.0743(21)	0.6223(37	-2.812323	1.067224	0.608867	-2.805394	1.069846	0.614426

Table S32. Substitution coordinates of the carbon atoms of limonene Eq-C in Å.

Table S33. Substitution coordinates of the carbon atoms of perillaldehyde Eq-A in Å.

		r _s		B3LYP- D3BJ			MP2		
	<i>a</i>	<i>b</i>	<i>c</i>	а	b	С	а	b	С
C_1	1.112(13)	0.000(63)	0.285(51)	1.115882	0.002205	-0.367205	1.103534	0.014497	-0.354886
C ₂	0.356(55)	1.146(17)	0.218(92)	0.342434	-1.172864	0.257219	0.344436	-1.154058	0.290038
C ₃	1.119(15)	1.138(15)	0.12(15)	-1.131857	-1.134689	-0.154622	-1.123089	-1.134944	-0.140666
C_4	1.722(14)	0.10(23)	0.00(11)	-1.719176	0.241671	0.012451	-1.713315	0.239740	0.024564
C ₅	0.950(19)	1.354(13)	0.17(11)	-0.962828	1.341235	0.163458	-0.958206	1.350031	0.191555
C ₆	0.582(36)	1.314(16)	0.000(99)	0.534576	1.333278	0.153675	0.543319	1.339591	0.189511
C ₇	2.5912(80)	0.220(95)	0.253(83)	2.613324	-0.076018	-0.154616	2.599877	-0.075549	-0.168248
C_8	3.4457(56)	0.000(73)	1.181(17)	3.454710	0.022417	-1.185615	3.429354	0.033550	-1.222763
C ₉	3.1137(72)	0.326(68)	1.268(18)	3.111328	-0.267171	1.255028	3.122636	-0.301295	1.228935
C ₁₀	3.1647(80)	0.490(52)	0.306(84)	-3.182636	0.395612	0.013344	-3.181858	0.393868	0.002397

		r _s		B3LYP- D3BJ			MP2		
	<i>a</i>	<i>b</i>	<i>c</i>	а	b	С	а	b	С
C_1	1.0828(50)	0.091(60)	0.326(17)	1.117387	-0.024998	-0.293192	1.105364	-0.025959	-0.288906
C_2	0.262(28)	1.2501(59)	0.00(33)	0.290024	-1.255496	0.096032	0.287526	-1.248561	0.132029
C ₃	1.1511(50)	1.1065(53	0.356(17)	-1.170930	-1.097098	-0.333617	-1.165909	-1.100987	-0.321214
C_4	1.7133(35)	0.247(4)	0.070(87)	-1.725724	0.244841	0.061678	-1.718868	0.241515	0.072471
C_5	0.9407(76)	1.2700(56)	0.405(18)	-0.940919	1.274178	0.418200	-0.930760	1.276360	0.442756
C_6	0.5336(75)	1.2232(33	0.4541(89)	0.555330	1.220100	0.430825	0.569154	1.214980	0.451571
C_7	2.5938(24)	0.181(35)	0.180(35)	2.611883	-0.148739	-0.068289	2.600105	-0.149194	-0.090464
C_8	3.4406(24)	0.9409(87)	0.730(11)	3.454750	0.929414	-0.701474	3.437975	0.934422	-0.724430
C ₉	3.1641(12)	1.1390(53	0.6282(97)	3.165808	-1.133350	0.641444	3.164585	-1.139421	0.625303
C ₁₀	3.1747(21)	0.471(14)	0.170(39)	-3.183877	0.442798	0.067158	-3.181067	0.447655	0.058588

Table S34. Substitution coordinates of the carbon atoms of perillaldehyde Eq-C in Å.

Table S35. Substitution coordinates of the carbon atoms of perillaldehyde Eq-a in Å.

		$r_{\rm s}$			B3LYP- D3BJ			MP2		
	a	<i>b</i>	<i>c</i>	а	b	С	а	b	С	
C ₁	1.0828(50)	0.00(29)	0.301(18)	-1.113880	-0.009768	-0.272139	-1.103741	-0.008179	-0.267053	
C ₂	0.359(11)	0.9510(42)	0.6489(63)	-0.366018	0.960357	0.667765	-0.365932	0.916538	0.718755	
C ₃	1.0884(78)	1.1088(77)	0.274(31)	1.102098	1.102729	0.256315	1.094908	1.092040	0.299894	
C_4	1.7212(23)	0.240(17)	0.03(14)	1.732268	-0.232837	-0.036938	1.723432	-0.232586	-0.039462	
C ₅	1.0044(32)	1.3625(24)	0.169(20)	1.012094	-1.353640	-0.209142	1.003348	-1.360789	-0.238548	
C ₆	0.490(10)	1.4058(36	0.000(42)	-0.484085	-1.403009	-0.150215	-0.496104	-1.410003	-0.171882	
C ₇	2.59906(96)	0.000(28)	0.162(15)	-2.613671	0.034712	-0.055049	-2.601118	0.048547	-0.060676	
C ₈	3.2821(12)	1.2877(30)	0.5902(66)	-3.304093	1.239688	-0.641980	-3.292523	1.202768	-0.742267	
C ₉	3.31495(79)	0.9436(28	0.5075(53	-3.300101	-0.901650	0.602647	-3.284824	-0.834941	0.689814	
C_{10}	3.1921(14)	0.333(13)	0.165(27)	3.197110	-0.320473	-0.141593	3.192622	-0.313397	-0.162796	

	ľ,			B3LYP- D3BJ			MP2		
	a	<i>b</i>	<i>c</i>	а	b	С	а	b	С
C_1	1.698(19)	0.18(17)	1.760(19	1.705136	-0.127430	-1.744821	1.662840	-0.099204	-1.769905
C_2	2.013(0.15(15)	0.481(46	2.049248	0.145263	-0.485255	1.977018	0.190105	-0.493470
C ₃	1.356(14)	0.562(34)	0.769(26	1.384465	-0.482298	0.729307	1.403930	-0.543136	0.703815
C_4	0.612(29)	1.735(10	0.250(79	0.545955	-1.735980	0.425206	0.583014	-1.789699	0.352710
C ₅	0.812(23)	1.451(13	0.16(12)	-0.850944	-1.435180	-0.024663	-0.807653	-1.452659	-0.105371
C_6	1.379(27)	0.27(14)	0.16(24)	-1.420804	-0.221782	0.055245	-1.372678	-0.233324	0.053745
C_7	0.675(24)	0.943(17)	0.665(25	-0.698949	0.971769	0.617129	-0.658533	0.911017	0.717264
C_8	0.527(79)	0.416(95	1.483(29	0.496626	0.545936	1.471737	0.520554	0.401241	1.546015
C ₉	2.768(0.00(18)	0.428(72	-2.798478	-0.063352	-0.434060	-2.743044	-0.029356	-0.454819
C ₁₁	2.991(21)	1.296(50)	0.42(16)	3.147237	1.130328	-0.173321	2.941225	1.305179	-0.167087

Table S36. Substitution coordinates of the carbon atoms of perillaldehyde Ax-a in Å.
Bond length	Eq-A	Eq-C
$r(C_1-C_2)$	1.511(8)	1.505(10)
$r(C_2 - C_3)$	1.350(6)	1.351(8)
$r(C_3 - C_4)$	1.486(7)	1.481(9)
$r(C_4 - C_5)$	1.514(10)	1.526(14)
$r(C_6-C_9)$	1.522(7)	1.526(5)
$r(C_6-C_1)$	1.531(19)	1.543(10)
$r(C_9 - C_{11})$	1.343(12)	1.345(5)
$r(C_9 - C_{10})$	1.509(15)	1.509(7)
$r(C_3 - C_7)$	1.502(3)	1.502(4)
Angle		
$\angle C_1 C_2 C_3$	124.3(2)	124.3(3)
$\angle C_2 C_3 C_4$	119.7(2)	119.4(2)
$\angle C_6 C_1 C_2$	111.3(6)	111.6(5)
$\angle C_2 C_3 C_7$	123.2(5)	123.4(6)
$\angle C_5 C_6 C_9$	112.9(11)	113.9(6)
$\angle C_6 C_9 C_{10}$	118.4(9)	115.7(2)
$\angle C_6 C_9 C_{11}$	120.5(13)	-
Dihedral angle		
$\tau(C_1C_2C_3C_4)$	-3.4(15)	-3.6(8)
$\tau(C_6C_1C_2C_3)$	-20.8(21)	-20.2(11)
$\tau(C_1C_2C_3C_7)$	177.7(27)	177.2(18)
$\tau(C_4C_5C_6C_9)$	177.2(6)	-
$\tau(C_5C_6C_9C_{10})$	-	189.0(10)
$\tau(C_1C_6C_9C_{11})$	113.2(2)	-
σ^{a}	0.0088	0.0105

Table S37. Effective r_0 bond lengths (in Å), bond angles and dihedral angles (in degrees) of the **Eq-A** and **Eq-C** conformers of **carvone**.

9 11

/2

6

10

5 4

0

^a Deviation of the fit

Table S38. Effective r_0 bond lengths (in Å), bond angles and dihedral angles (in degrees) of the **Eq-A** and **Eq-C** conformers of **limonene**.

, 10

Bond length	Eq-A	Eq-C
$r(C_1-C_2)$	1.506(15)	1.472(20)
$r(C_2 - C_3)$	-	1.347(10)
$r(C_3-C_4)$	1.508(21)	1.516(9)
$r(C_5-C_6)$	-	1.530(18)
$r(C_6 - C_9)$	1.507(15)	1.528(10)
$r(C_6 - C_1)$	1.571(18)	1.545(19)
$r(C_9 - C_{11})$	1.351(14)	1.353(6)
$r(C_9 - C_{10})$	1.522(14)	1.495(7)
$r(C_3 - C_7)$	1.498(11)	1.503(4)
Angle		
$\angle C_1 C_2 C_3$	-	123.7(4)
$\angle C_2C_3C_4$	119.0(7)	121.5(3)
$\angle C_5 C_6 C_1$	-	107.9(10)
$\angle C_6C_1C_2$	-	113.6(5)
$\angle C_2 C_3 C_7$	127.8(20)	-
$\angle C_6 C_9 C_{10}$	117.6(7)	116.2(4)
Dihedral angle		
$\tau(C_6C_1C_2C_3)$	-	-13.9(2)
$\tau(C_1C_2C_3C_7)$	174.7(32)	177.7(16)
$\tau(C_5C_6C_1C_2)$	-	48.5(15)
$\tau(C_{10}C_9C_6C_1)$	-63.0(27)	-
$\tau(C_{11}C_9C_6C_1)$	100.7(24)	-
σ^{a}	0.057	0.019
^a Deviation of the f	fit	

Bond length	Eq-A	Eq-C	Eq-a
			· · · · · ·
$r(C_1-C_2)$	1.537(48)	1.506(16)	1.525(21)
$r(C_3-C_2)$	1.490(58)	1.534(17)	1.537(20)
$r(C_4-C_3)$	1.513(31)	1.519(9)	1.507(14)
$r(C_5-C_4)$	1.359(30)	1.332(9)	1.349(19)
$r(C_6 - C_1)$	1.490(58)	1.542(14)	1.506(20)
$r(C_7 - C_1)$	1.521(23)	1.518(6)	1.531(9)
$r(C_7 - C_8)$	1.337(20)	1.339(8)	1.328(11)
$r(C_7 - C_9)$	1.536(17)	1.527(10)	1.539(10)
$r(C_4 - C_{10})$	1.475(16)	1.475(4)	1.476(5)
Angle			
$\angle C_3C_2C_1$	111.8(23)	111.0(7)	111.0(9)
$\angle C_3C_4C_5$	122.7(12)	-	123.1(5)
$\angle C_6 C_1 C_2$	111.6(26)	110.3(6)	110.6(8)
$\angle C_9C_7C_1$	117.6(9)	115.4(3)	114.0(4)
$\angle C_4 C_3 C_2$	-	110.8(3)	110.9(6)
$\angle C_6 C_1 C_7$	-	-	115.6(8)
$\angle C_{10}C_4C_3$	-	-	118.9(10)
Dihedral angle			
$\tau(C_4C_3C_2C_1)$	-	-	-45.3(12)
$\tau(C_3C_4C_5C_6)$	19.0(33)	-	-
$\tau(C_6C_1C_2C_3)$	61.0(28)	62.9(7)	-
$\tau(C_7C_1C_6C_5)$	-	187.5(7)	189.8(24)
$\tau(C_9C_7C_1C_2)$	-	166.5(3)	-
$\tau(C_8C_7C_1C_6)$	-	-	12.2(19)
σ^{a}	0.066	0.019	0.021

Table S39. Effective r_0 bond lengths (in Å), bond angles and dihedral angles (in degrees) of the Eq-A, Eq-C, Eq-a conformers of perillaldehyde.

7 _9

^a Deviation of the fit

Table S40. Effective r_0 bond lengths (in Å), bond angles and dihedral angles (in degrees) of the **Ax-a** conformer of **perillaldehyde**.

Bond length	Ax-a
$r(C_1-C_2)$	1.367(44)
$r(C_2 - C_3)$	1.594(41)
$r(C_3 - C_4)$	1.377(36)
$r(C_7 - C_4)$	1.468(20)
$r(C_9-C_1)$	1.546(71)
$r(C_{10}-C_{9})$	1.547(82)
$r(C_{11}-C_9)$	1.420(25)
Angle	
$\angle C_1 C_2 C_3$	113.9(13)
$\angle C_2 C_3 C_4$	120.6(17)
$\angle C_6 C_1 C_2$	114.2(24)
$\angle C_7 C_4 C_3$	116.6(26)
$\angle C_9C_1C_2$	117.3(29)
$\angle C_{10}C_9C_1$	114.3(25)
$\angle C_{11}C_9C_1$	132.9(71)
Dihedral angle	
$\tau(C_1C_2C_3C_4)$	-8.0(21)
$\tau(C_6C_1C_2C_3)$	36.1(31)
$\tau(C_{10}C_9C_1C_2)$	8.3(19)
	. *
σ^{a}	0.075

^a Deviation of the fit

	Eq-A	Eq-C	Eq-a	Ax-a	Ax-C	Ax-A
A (MHz)	2252.6	2276.2	2231.9	1612.3	1673.2	1816.3
B (MHz)	660.3	679.1	692.1	923.6	896.6	834.0
C (MHz)	582.0	553.4	552.8	793.0	784.3	765.6
$u_{a}\left(\mathrm{D}\right)$	1.9	2.1	1.8	1.3	2.3	1.3
$\iota_b(\mathrm{D})$	2.8	3.0	2.5	2.7	2.9	3.1
$u_{c}(\mathrm{D})$	0.8	0.5	0.2	1.2	0.7	0.5
ΔE (cm ⁻¹)	11	0	61	272	145	346
ΔE_{ZPC} (cm ⁻¹)	32	0	120	383	325	436
∆G (cm ⁻¹)	24	0	146	478	568	506

Table S41. Theoretical spectroscopic parameters of the six stable conformers of **carvone** calculated at the M062X-GD3 level of theory.

Table S42. Theoretical spectroscopic parameters of the six stable conformers of **limonene** calculated at the M062X-GD3 level of theory.

	Eq-A	Eq-C	Eq-a	Ax-A	Ax-a	Ax-C
A (MHz)	3075.1	3072.0	3061.8	2206.9	2131.9	1957.3
B (MHz)	723.4	749.6	756.4	942.5	954.9	1000.9
C (MHz)	680.6	646.2	638.4	918.6	918.9	930.2
$\mu_{a}\left(\mathrm{D}\right)$	0.4	0.3	0.3	0.5	0.1	0.1
$\mu_{b}\left(\mathrm{D}\right)$	0.4	0.2	0.7	0.1	0.6	0.2
$\mu_{c}\left(\mathrm{D}\right)$	0.3	0.3	0.1	0.0	0.3	0.3
$\Delta E (cm^{-1})$	2	0	179	573	24	626
ΔE_{ZPC} (cm ⁻¹)	45	0	184	659	82	771
$\Delta G (cm^{-1})$	57	0	220	743	151	888

	Eq-A_0	Eq-C_0	Eq-a_0	Ax-a_0	Ax-A_0	Ax-C_0
A (MHz)	2900.5	2858.5	2934.2	2049.9	2110.0	1788.8
B (MHz)	539.8	555.5	554.6	694.0	693.3	731.4
C (MHz)	509.9	490.2	484.1	674.0	667.4	687.2
μ_{a} (D)	2.9	2.9	3.1	3.4	2.7	2.9
μ_b (D)	1.6	1.2	1.8	1.7	1.5	1.4
$\mu_{c}\left(\mathrm{D}\right)$	0.1	0.6	0.1	0.5	0.2	1.1
$\Delta E (cm^{-1})$	1152	1162	1333	1054	1707	1782
ΔE_{ZPC} (cm ⁻¹)	1118	1116	1297	1147	1749	1904
$\Delta G (cm^{-1})$	1099	1093	1305	1222	1821	2005
	Eq-A	Eq-C	Eq-a	Ax-a	Ax-A	Ax-C
A (MHz)	2949.3	2974.6	2904.5	1910.9	2017.3	1805.2
B (MHz)	540.1	552.0	560.7	721.0	701.9	736.6
C (MHz)	512.3	491.4	487.1	686.5	688.9	700.4
μ_a (D)	3.0	3.2	3.0	2.9	2.5	3.1
μ_b (D)	1.6	1.9	1.5	2.2	2.3	2.3
μ_{c} (D)	0.7	0.4	0.1	0.9	1.0	0.8
$\Delta E (cm^{-1})$	14	45	168	0	595	704
ΔE_{ZPC} (cm ⁻¹)	0	73	247	68	723	843
$\Delta G (cm^{-1})$	0	165	370	173	940	993

Table S43. Theoretical spectroscopic parameters of the six stable conformers of **limonene** calculated at the M062X-GD3 level of theory.

Figure S1. Geometries of the six conformers of **carvone** calculated at the MP2/6-311++G(d,p) level of theory.

Figure S2. Geometries of the six conformers of **limonene** calculated at the MP2/6-311++G(d,p) level of theory.

Eq-a

Figure S3. Geometries of the twelve conformers of perillaldehyde calculated at the MP2/6-311++G(d,p) level of theory.

Eq-A_0

Eq-C_0

Eq-a_0

Figure S4. Calculated differences between experimental and theoretical rotational constants (in MHz) for the four observed conformers of **limonene**.

Figure S5. Calculated differences between experimental and theoretical rotational constants (in MHz) for the four observed conformers of **perillaldehyde**.

Figure S6. Calculated differences between experimental and theoretical vibrationally-corrected rotational constants A_0 , B_0 , C_0 (in MHz) for the five observed conformers of **carvone**.

Figure S7. Comparison of the theoretical structures of **perillaldehyde** (full molecular drawing) with the r_s atom coordinates of the C atoms (green spheres).

Eq-a

M062X

B3LYP-D3BJ

B3LYP

M062X

Eq-A

B3LYP-D3BJ

Figure S8. Interconversion barriers between the conformers of **carvone** calculated at the MP2/6-311++G(d,p) level of theory.

Figure S9. Interconversion barriers between the conformers of **limonene** calculated at the MP2/6-311++G(d,p) level of theory.

Figure S10. Interconversion barriers between the conformers of perillaldehyde calculated at the MP2/6-311++G(d,p) level of theory.

Figure S11. Interconversion barriers between conformers Ax-C and Eq-C of carvone at the B3LYP-D3BJ/6-311++G(d,p) (top) and axial and MP2/6-311++G(d,p) (bottom) levels of theory.

Figure S12. NCI plots for the five observed conformers of carvone showing the intramolecular interactions. Red indicates repulsive interactions, blue and green indicates strong and weak attractive interactions, respectively.

Figure S13. NCI plots for the four observed conformers of **limonene** showing the intramolecular interactions. Red indicates repulsive interactions, blue and green indicates strong and weak attractive interactions, respectively.

Figure S14. NCI plots for the four observed conformers of **perillaldehyde** showing the intramolecular interactions. Red indicates repulsive interactions, blue and green indicates strong and weak attractive interactions, respectively.

