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Fig. S1: (Color online) Enthalpies of the €(Os) and {(C2/m) oxygen structures relative to n’
computed within the (a) GGA, (b) LDA, and (c) spin polarized LDA and GGA at 0 K. In all
cases, {(C2/m) is stable in the experimental stability range of €(Os).
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Fig. S2: Electronic band structures of solid oxygen at 90 GPa for the (a) 1, (b) £ (C2/m), and (c)

€(Ogs) phases calculated within the HSE06 approximation. The inset, (D), shows the band gap of

€(0Ogs) as a function of pressure.
Fig. S3: Electronic band structures of solid oxygen at 50 GPa for the (a) ' and (b) £(Os) phases

calculated within the HSE06 approximation.
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Fig. S4: (Color online) Primitive cell of the £(Og) phase of solid oxygen at 90 GPa in the C2/m
crystal group. The intermolecular d; (intracell) and d> (intercell) distances are shown.
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Fig. S5: (Color online) Specific volumes of the &(Os), { (C2/m), and n’ phases of oxygen as a
function of pressure from structural optimizations within the GGA-PBE and HSEO06
approximations.
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Fig. S6: Calculated X-ray diffraction spectra (for wavelength 1.213 A) from structural
optimizations (HSE06) for the £(Os) and C>/m oxygen structures at 30, 50 and 70 GPa.
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Fig. S7: Electronic band structure calculations within GGA-PBE for the £(Os) oxygen structure
optimized using GGA-PBE and HSEQ6. The differences originate in the resulting different O
bond lengths and slightly different unit cell shapes between the two exchange approximations.
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Fig. S8: Electronic band structure calculations within HSE06 for the &(Og) oxygen structure
optimized using GGA-PBE and HSEO06. The differences originate in the resulting different O
bond lengths and slightly different unit cell shapes between the two exchange approximations.



Fig. S9: Normal view along z and x axis for (a) the ' (b) £(Os) phase.
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Fig. S10: Electronic density of states (EDOS) of the £(Og) and ' oxygen structures at 0 K and ~
50 GPa calculated within GGA-PBE. The dashed vertical lines indicate the location of the Fermi
energy. The inset shows the EDOS difference (AEDOS = EDOS (n")-EDOS (&(0Os))).
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Fig. S11: Electronic density of states of the £(Osg) and 1" oxygen structures at ~ 50 GPa averaged
along a molecular dynamics trajectory at 800 K, calculated within GGA-PBE. The dashed
vertical lines indicate location of the Fermi energy. The Inset shows the EDOS difference
(AEDOS = EDOS (n")-EDOS (g(0y))).



