## **Supplemental Information**

The supplemental information contains additional figures and tables documenting the experimental and modeling results presented in the main document. Specifically included are:

Figure S1: Interfragment distance dependence of the energetics of all of the entrance and exit channels for the  $Xe^{2+} + O_2$  collision system for a perpendicular approach.

Figure S2: Cartoon schematic of a 2-exit, entrance channel multi-channel Landau-Zener model (MCLZ). The example equations for calculating the populations after each crossing are employed in every crossing shown in Figure S1.

Figure S3: Multi-channel LZ model results for the parameter set best found to reproduce the  $O_2^+(A)$  and (*b*) vibrational populations and fall-within a factor of 2 of the experimental values at low collision energies.

Figure S4: Example schematic for MCLZ model including selected calculations for the best fit parameters as described in the main report.

Table S1: Reactant channels and their asymptotic energies used for the LZ modeling.

Table S2: Product channels and their asymptotic energies used for the LZ modeling.

Tables S3-S6: Franck-Condon factors used in the MCLZ

Table S7: Best fit experimental vibrational populations for the  $O_2^+$  (*b*) state derived from fitting of the  $O_2^+$  (*b-a*) emissions.

Table S8:  $O_2^+$  (b) populations expected from charge-transfer as determined from the MCLZ model

Table S9: Experimental and simulated results for the  $O_2^+$  (A) state.



Figure S1: Example entrance (blue) and exit (red) channels for an O<sub>2</sub> polarizability of 7.57 au. Ground state entrance channel is shown in black.



**Figure S2:** Cartoon depiction of a multi-channel LZ model for calculating resulting populations in two entrance, R1 and R2, and two exit, P1 and P2, channels. Only selected hops have their respective equations shown.

| Reactant Channel                                                       | Asymptotic Energy | Reactant Channel                                         | Asymptotic Energy |
|------------------------------------------------------------------------|-------------------|----------------------------------------------------------|-------------------|
|                                                                        | (eV)              |                                                          | (eV)              |
| $Xe^{2+}({}^{3}P_{2}) + O_{2}(X, v = 0)$                               | 33.1048           | $Xe^{2+}$ ( <sup>1</sup> D) + O <sub>2</sub> (X, v = 9)  | 36.8536           |
| $Xe^{2+}({}^{3}P_{2}) + O_{2}(X, v = 1)$                               | 33.2978           | $Xe^{2+}$ ( <sup>1</sup> D) + O <sub>2</sub> (X, v = 10) | 37.0196           |
| $Xe^{2+}({}^{3}P_{2}) + O_{2}(X, v = 2)$                               | 33.4877           | $Xe^{2+}$ ( <sup>1</sup> S) + O <sub>2</sub> (X, v = 0)  | 37.5810           |
| $Xe^{2+}({}^{3}P_{2}) + O_{2}(X, v = 3)$                               | 33.6747           | $Xe^{2+}$ ( <sup>1</sup> S) + O <sub>2</sub> (X, v = 1)  | 37.7740           |
| $Xe^{2+}({}^{3}P_{2}) + O_{2}(X, v = 4)$                               | 33.8587           | $Xe^{2+}$ ( <sup>1</sup> S) + O <sub>2</sub> (X, v = 2)  | 37.9639           |
| $Xe^{2+}(^{3}P_{2}) + O_{2}(X, v = 5)$                                 | 34.0396           | $Xe^{2+}$ ( <sup>1</sup> S) + O <sub>2</sub> (X, v = 3)  | 38.1509           |
| $Xe^{2+}(^{3}P_{2}) + O_{2}(X, v = 6)$                                 | 34.2176           | $Xe^{2+}$ ( <sup>1</sup> S) + O <sub>2</sub> (X, v = 4)  | 38.3349           |
| $Xe^{2+}(^{3}P_{2}) + O_{2}(X, v = 7)$                                 | 34.3926           | $Xe^{2+}$ ( <sup>1</sup> S) + O <sub>2</sub> (X, v = 5)  | 38.5158           |
| $Xe^{2+}({}^{3}P_{2}) + O_{2}(X, v = 8)$                               | 34.5646           | $Xe^{2+}$ ( <sup>1</sup> S) + O <sub>2</sub> (X, v = 6)  | 38.6938           |
| $Xe^{2+}({}^{3}P_{2}) + O_{2}(X, v = 9)$                               | 34.7336           | $Xe^{2+}$ ( <sup>1</sup> S) + O <sub>2</sub> (X, v = 7)  | 38.8688           |
| $Xe^{2+}({}^{3}P_{2}) + O_{2}(X, v = 10)$                              | 34.8996           | $Xe^{2+}$ ( <sup>1</sup> S) + O <sub>2</sub> (X, v = 8)  | 39.0408           |
| $Xe^{2+}({}^{3}P_{0}) + O_{2}(X, v = 0)$                               | 34.1129           | $Xe^{2+}$ ( <sup>1</sup> S) + O <sub>2</sub> (X, v = 9)  | 39.2098           |
| $Xe^{2+}({}^{3}P_{0}) + O_{2}(X, v = 1)$                               | 34.3058           | $Xe^{2+}$ ( <sup>1</sup> S) + O <sub>2</sub> (X, v = 10) | 39.3758           |
| $Xe^{2+}({}^{3}P_{0}) + O_{2}(X, v = 2)$                               | 34.4957           |                                                          |                   |
| $Xe^{2+}({}^{3}P_{0}) + O_{2}(X, v = 3)$                               | 34.6827           |                                                          |                   |
| $Xe^{2+}({}^{3}P_{0}) + O_{2}(X, v = 4)$                               | 34.8667           |                                                          |                   |
| $Xe^{2+}({}^{3}P_{0}) + O_{2}(X, v = 5)$                               | 35.0476           |                                                          |                   |
| $Xe^{2+}({}^{3}P_{0}) + O_{2}(X, v = 6)$                               | 35.2256           |                                                          |                   |
| $Xe^{2+}({}^{3}P_{0}) + O_{2}(X, v = 7)$                               | 35.4006           |                                                          |                   |
| $Xe^{2+}({}^{3}P_{0}) + O_{2}(X, v = 8)$                               | 35.5726           |                                                          |                   |
| $Xe^{2+}({}^{3}P_{0}) + O_{2}(X, v = 9)$                               | 35.7416           |                                                          |                   |
| $Xe^{2+} ({}^{3}P_{0}) + O_{2} (X, v = 10)$                            | 35.9076           |                                                          |                   |
| $Xe^{2+}({}^{3}P_{1}) + O_{2}(X, v = 0)$                               | 34.3192           |                                                          |                   |
| $Xe^{2+} ({}^{3}P_{1}) + O_{2} (X, v = 1)$                             | 34.5121           |                                                          |                   |
| $Xe^{2+}({}^{3}P_{1}) + O_{2}(X, v = 2)$                               | 34.7021           |                                                          |                   |
| $Xe^{2+} ({}^{3}P_{1}) + O_{2} (X, v = 3)$                             | 34.8891           |                                                          |                   |
| $Xe^{2+} ({}^{3}P_{1}) + O_{2} (X, v = 4)$                             | 35.0730           |                                                          |                   |
| $Xe^{2+} ({}^{3}P_{1}) + O_{2} (X, v = 5)$                             | 35.2540           |                                                          |                   |
| $Xe^{2+} ({}^{3}P_{1}) + O_{2} (X, v = 6)$                             | 35.4320           |                                                          |                   |
| $Xe^{2+}$ ( <sup>3</sup> P <sub>1</sub> ) + O <sub>2</sub> (X, v = 7)  | 35.6070           |                                                          |                   |
| $Xe^{2+}$ ( <sup>3</sup> P <sub>1</sub> ) + O <sub>2</sub> (X, v = 8)  | 35.7789           |                                                          |                   |
| $Xe^{2+}$ ( <sup>3</sup> P <sub>1</sub> ) + O <sub>2</sub> (X, v = 9)  | 35.9479           |                                                          |                   |
| $Xe^{2+}$ ( <sup>3</sup> P <sub>1</sub> ) + O <sub>2</sub> (X, v = 10) | 36.1139           |                                                          |                   |
| $Xe^{2+}$ ( <sup>1</sup> D) + O <sub>2</sub> (X, v = 0)                | 35.2248           |                                                          |                   |
| $Xe^{2+}$ ( <sup>1</sup> D) + O <sub>2</sub> (X, v = 1)                | 35.4178           |                                                          |                   |
| $Xe^{2+}$ ( <sup>1</sup> D) + O <sub>2</sub> (X, v = 2)                | 35.6077           |                                                          |                   |
| $Xe^{2+}$ ( <sup>1</sup> D) + O <sub>2</sub> (X, v = 3)                | 35.7947           |                                                          |                   |
| $Xe^{2+}$ ( <sup>1</sup> D) + O <sub>2</sub> (X, v = 4)                | 35.9787           |                                                          |                   |
| $Xe^{2+}$ ( <sup>1</sup> D) + O <sub>2</sub> (X, v = 5)                | 36.1596           |                                                          |                   |
| $Xe^{2+}$ ( <sup>1</sup> D) + O <sub>2</sub> (X, v = 6)                | 36.3376           |                                                          |                   |
| $Xe^{2+}$ ( <sup>1</sup> D) + O <sub>2</sub> (X, v = 7)                | 36.5126           |                                                          |                   |
| $Xe^{2+}$ ( <sup>1</sup> D) + O <sub>2</sub> (X, v = 8)                | 36.6846           |                                                          |                   |

Table S1: Reactant Channels and Asymptotic Energies Used in Multi-Channel Landau-Zener Model

| Channel | Reactant Channel                              | Asymptotic  | Channel | Reactant Channel                                                                            | Asymptotic  |
|---------|-----------------------------------------------|-------------|---------|---------------------------------------------------------------------------------------------|-------------|
| #       |                                               | Energy (eV) | #       |                                                                                             | Energy (eV) |
| 1       | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(b, v = 0)$   | 31.6058     | 43      | $Xe^{+}(^{2}P_{3/2})+O_{2}^{+}(A, v = 5)$                                                   | 29.6859     |
| 2       | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (b, v = 1)  | 31.7499     | 44      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(A, v = 6)$                                                 | 29.7771     |
| 3       | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(b, v = 2)$   | 31.8898     | 45      | $Xe^{+}(^{2}P_{3/2})+O_{2}^{+}(A, v = 7)$                                                   | 29.8649     |
| 4       | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (b, v = 3)  | 32.0255     | 46      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(A, v = 8)$                                                 | 29.9493     |
| 5       | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (b, v = 4)  | 32.1569     | 47      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(A, v = 9)$                                                 | 30.0304     |
| 6       | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (b, v = 5)  | 32.2841     | 48      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(A, v = 10)$                                                | 30.1081     |
| 7       | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (b, v = 6)  | 32.4071     | 49      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(A, v = 11)$                                                | 30.1824     |
| 8       | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (b, v = 7)  | 32.5258     | 50      | Xe <sup>+</sup> ( <sup>2</sup> P <sub>3/2</sub> )+ O <sub>2</sub> <sup>+</sup> (A, v = 12)  | 30.2534     |
| 9       | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}$ (b, v = 0)  | 30.2993     | 51      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(A, v = 13)$                                                | 30.3210     |
| 10      | $Xe^{+} (^{2}P_{3/2}) + O_{2}^{+}$ (b, v = 1) | 30.4435     | 52      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}$ (A, v = 14)                                               | 30.3853     |
| 11      | $Xe^{+} (^{2}P_{3/2}) + O_{2}^{+} (b, v = 2)$ | 30.5834     | 53      | $Xe^{+} (^{2}P_{3/2}) + O_{2}^{+} (A, v = 15)$                                              | 30.4461     |
| 12      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}$ (b, v = 3)  | 30.7190     | 54      | Xe <sup>+</sup> ( <sup>2</sup> P <sub>3/2</sub> ) + O <sub>2</sub> <sup>+</sup> (A, v = 16) | 30.5036     |
| 13      | $Xe^{+} (^{2}P_{3/2}) + O_{2}^{+} (b, v = 4)$ | 30.8505     | 55      | Xe <sup>+</sup> ( <sup>2</sup> P <sub>3/2</sub> ) + O <sub>2</sub> <sup>+</sup> (A, v = 17) | 30.5578     |
| 14      | $Xe^{+} (^{2}P_{3/2}) + O_{2}^{+} (b, v = 5)$ | 30.9777     | 56      | Xe <sup>+</sup> ( <sup>2</sup> P <sub>3/2</sub> ) + O <sub>2</sub> <sup>+</sup> (A, v = 18) | 30.6086     |
| 15      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}$ (b, v = 6)  | 31.1006     | 57      | Xe <sup>+</sup> ( <sup>2</sup> P <sub>3/2</sub> ) + O <sub>2</sub> <sup>+</sup> (A, v = 19) | 30.6560     |
| 16      | $Xe^{+} (^{2}P_{3/2}) + O_{2}^{+} (b, v = 7)$ | 31.2193     | 58      | $Xe^{+} (^{2}P_{3/2}) + O_{2}^{+} (A, v = 20)$                                              | 30.7000     |
| 17      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 0)  | 30.4860     | 59      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 0)$                                                 | 25.5060     |
| 18      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 1)  | 30.5940     | 60      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 1)$                                                 | 25.7381     |
| 19      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 2)  | 30.6986     | 61      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 2)$                                                 | 25.9662     |
| 20      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 3)  | 30.7999     | 62      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 3)$                                                 | 26.1902     |
| 21      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 4)  | 30.8978     | 63      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 4)$                                                 | 26.4103     |
| 22      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 5)  | 30.9923     | 64      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 5)$                                                 | 26.6263     |
| 23      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 6)  | 31.0835     | 65      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 6)$                                                 | 26.8382     |
| 24      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(A, v = 7)$   | 31.1713     | 66      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 7)$                                                 | 27.0462     |
| 25      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 8)  | 31.2557     | 67      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 8)$                                                 | 27.2501     |
| 26      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 9)  | 31.3368     | 68      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 9)$                                                 | 27.4499     |
| 27      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 10) | 31.4145     | 69      | $Xe^{+} (^{2}P_{1/2}) + O_{2}^{+} (X, v = 10)$                                              | 27.6458     |
| 28      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 11) | 31.4889     | 70      | $Xe^{+} (^{2}P_{1/2}) + O_{2}^{+} (X, v = 11)$                                              | 27.8376     |
| 29      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 12) | 31.5598     | 71      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 12)$                                                | 28.0253     |
| 30      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 13) | 31.6274     | 72      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 13)$                                                | 28.2091     |
| 31      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 14) | 31.6917     | 73      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 14)$                                                | 28.3888     |
| 32      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 15) | 31.7526     | 74      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 15)$                                                | 28.5645     |
| 33      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 16) | 31.8101     | 75      | $Xe^{+} (^{2}P_{1/2}) + O_{2}^{+} (X, v = 16)$                                              | 28.7361     |
| 34      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 17) | 31.8642     | 76      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 17)$                                                | 28.9037     |
| 35      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 18) | 31.9150     | 77      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 18)$                                                | 29.0673     |
| 36      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 19) | 31.9624     | 78      | $Xe^{+} (^{2}P_{1/2}) + O_{2}^{+} (X, v = 19)$                                              | 29.2269     |
| 37      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}$ (A, v = 20) | 32.0065     | 79      | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(X, v = 20)$                                                | 29.3824     |
| 38      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}$ (A, v = 0)  | 29.1796     | 80      | $Xe^{+}(^{2}P_{3/2})+O_{2}^{+}(X, v = 0)$                                                   | 24.1995     |
| 39      | $Xe^{+}(^{2}P_{3/2})+O_{2}^{+}$ (A, v = 1)    | 29.2876     | 81      | $Xe^{+} (^{2}P_{3/2}) + O_{2}^{+} (X, v = 1)$                                               | 24.4317     |
| 40      | $Xe^{+}(^{2}P_{3/2})+O_{2}^{+}(A, v = 2)$     | 29.3922     | 82      | $Xe^{+}(^{2}P_{3/2})+O_{2}^{+}(X, v = 2)$                                                   | 24.6598     |
| 41      | $Xe^{+} (^{2}P_{3/2}) + O_{2}^{+} (A, v = 3)$ | 29.4935     | 83      | $Xe^{+} ({}^{2}P_{3/2}) + O_{2}^{+} (X, v = 3)$                                             | 24.8838     |
| 42      | $Xe^{+}(^{2}P_{3/2})+O_{2}^{+}(A, v = 4)$     | 29.5914     | 84      | $Xe^{+}(^{2}P_{3/2})+O_{2}^{+}(X, v = 4)$                                                   | 25.1038     |

Table S2: Product Channels and Asymptotic Energies Used in Multi-Channel Landau-Zener Model

| Table | S2-Cont. |
|-------|----------|
|       |          |

| Channel | Reactant Channel                             | Asymptotic  | Channel | Reactant Channel                             | Asymptotic Energy |
|---------|----------------------------------------------|-------------|---------|----------------------------------------------|-------------------|
| #       |                                              | Energy (eV) | #       |                                              | (eV)              |
| 85      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 5)$  | 25.3198     | 127     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 5)$  | 28.8363           |
| 86      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 6)$  | 25.5318     | 128     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 6)$  | 28.9492           |
| 87      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 7)$  | 25.7397     | 129     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 7)$  | 29.0596           |
| 88      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 8)$  | 25.9436     | 130     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 8)$  | 29.1674           |
| 89      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 9)$  | 26.1435     | 131     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 9)$  | 29.2726           |
| 90      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 10)$ | 26.3393     | 132     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 10)$ | 29.3753           |
| 91      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 11)$ | 26.5311     | 133     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 11)$ | 29.4754           |
| 92      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 12)$ | 26.7189     | 134     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 12)$ | 29.5728           |
| 93      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 13)$ | 26.9027     | 135     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 13)$ | 29.6678           |
| 94      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 14)$ | 27.0824     | 136     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 14)$ | 29.7601           |
| 95      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 15)$ | 27.2580     | 137     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 15)$ | 29.8499           |
| 96      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 16)$ | 27.4297     | 138     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 16)$ | 29.9371           |
| 97      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 17)$ | 27.5973     | 139     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 17)$ | 30.0217           |
| 98      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 18)$ | 27.7609     | 140     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 18)$ | 30.1037           |
| 99      | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 19)$ | 27.9204     | 141     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 19)$ | 30.1832           |
| 100     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(X, v = 20)$ | 28.0760     | 142     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 20)$ | 30.2600           |
| 101     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 0)$  | 29.5393     |         |                                              |                   |
| 102     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 1)$  | 29.6652     |         |                                              |                   |
| 103     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 2)$  | 29.7884     |         |                                              |                   |
| 104     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 3)$  | 29.9091     |         |                                              |                   |
| 105     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 4)$  | 30.0272     |         |                                              |                   |
| 106     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 5)$  | 30.1427     |         |                                              |                   |
| 107     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 6)$  | 30.2557     |         |                                              |                   |
| 108     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 7)$  | 30.3661     |         |                                              |                   |
| 109     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 8)$  | 30.4738     |         |                                              |                   |
| 110     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 9)$  | 30.5791     |         |                                              |                   |
| 111     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 10)$ | 30.6817     |         |                                              |                   |
| 112     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 11)$ | 30.7818     |         |                                              |                   |
| 113     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 12)$ | 30.8793     |         |                                              |                   |
| 114     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 13)$ | 30.9742     |         |                                              |                   |
| 115     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 14)$ | 31.0665     |         |                                              |                   |
| 116     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 15)$ | 31.1563     |         |                                              |                   |
| 117     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 16)$ | 31.2435     |         |                                              |                   |
| 118     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 17)$ | 31.3281     |         |                                              |                   |
| 119     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 18)$ | 31.4101     |         |                                              |                   |
| 120     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 19)$ | 31.4896     |         |                                              |                   |
| 121     | $Xe^{+}(^{2}P_{1/2}) + O_{2}^{+}(a, v = 20)$ | 31.5665     |         |                                              |                   |
| 122     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 0)$  | 28.2329     |         |                                              |                   |
| 123     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 1)$  | 28.3587     |         |                                              |                   |
| 124     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 2)$  | 28.4820     |         |                                              |                   |
| 125     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 3)$  | 28.6027     |         |                                              |                   |
| 126     | $Xe^{+}(^{2}P_{3/2}) + O_{2}^{+}(a, v = 4)$  | 28.7208     |         |                                              |                   |

| <i>v'/v''</i> | 0        | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       |
|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0             | 0.186    | 0.271    | 0.23     | 0.15     | 0.084    | 0.0424   | 0.02     | 0.00902  | 0.00394  | 0.00169  | 0.000715 |
| 1             | 0.362    | 0.0832   | 0.00496  | 0.0833   | 0.134    | 0.125    | 0.0898   | 0.0553   | 0.0309   | 0.0161   | 0.00802  |
| 2             | 0.291    | 0.0427   | 0.165    | 0.0534   | 0.000555 | 0.0441   | 0.0895   | 0.0982   | 0.0808   | 0.0561   | 0.0349   |
| 3             | 0.125    | 0.257    | 0.0165   | 0.0724   | 0.109    | 0.031    | 0.000616 | 0.0316   | 0.0673   | 0.0791   | 0.0703   |
| 4             | 0.0307   | 0.236    | 0.11     | 0.0965   | 0.00415  | 0.0821   | 0.0744   | 0.0164   | 0.00138  | 0.0265   | 0.0545   |
| 5             | 0.00433  | 0.091    | 0.267    | 0.0157   | 0.128    | 0.0132   | 0.0282   | 0.0766   | 0.0489   | 0.0076   | 0.00261  |
| 6             | 0.000326 | 0.0173   | 0.161    | 0.225    | 0.00347  | 0.0976   | 0.0542   | 0.000873 | 0.0467   | 0.0633   | 0.0307   |
| 7             | 1.07e-5  | 0.0016   | 0.0406   | 0.22     | 0.151    | 0.0389   | 0.0465   | 0.0808   | 0.00867  | 0.0148   | 0.0528   |
| 8             | 7.14e-8  | 5.94e-05 | 0.00453  | 0.0729   | 0.257    | 0.0787   | 0.0809   | 0.01     | 0.0783   | 0.0331   | 0.00036  |
| 9             | 7.16e-10 | 3.47e-07 | 0.000185 | 0.00965  | 0.111    | 0.267    | 0.028    | 0.106    | 0.000133 | 0.0554   | 0.0537   |
| 10            | 4.25e-11 | 8.65e-09 | 8.54e-07 | 0.000422 | 0.0172   | 0.151    | 0.257    | 0.00357  | 0.107    | 0.0114   | 0.028    |
| 11            | 2.46e-13 | 3.23e-10 | 5.21e-8  | 1.32e-06 | 0.000791 | 0.027    | 0.191    | 0.231    | 0.00123  | 0.0915   | 0.0318   |
| 12            | 2.1e-14  | 6.1e-12  | 1.19e-9  | 2.13e-07 | 1.21e-06 | 0.00128  | 0.0389   | 0.226    | 0.198    | 0.013    | 0.0671   |
| 13            | 7.65e-16 | 2.04e-13 | 5.31e-11 | 2.68e-09 | 6.66e-07 | 3.72e-07 | 0.00184  | 0.0521   | 0.258    | 0.162    | 0.031    |
| 14            | 8.53e-16 | 1.66e-14 | 7.48e-13 | 3.02e-10 | 3.67e-09 | 1.7e-06  | 2.56e-07 | 0.0024   | 0.0662   | 0.284    | 0.13     |
| 15            | 6.53e-16 | 4.35e-17 | 1.35e-13 | 8.8e-13  | 1.23e-09 | 1.96e-09 | 3.7e-06  | 5.83e-06 | 0.00286  | 0.0803   | 0.307    |
| 16            | 2.09e-15 | 1.28e-17 | 6.77e-17 | 8.09e-13 | 4.23e-17 | 3.9e-09  | 4.34e-10 | 6.94e-06 | 2.76e-05 | 0.00312  | 0.0938   |
| 17            | 3.66e-16 | 1.93e-18 | 5.85e-16 | 1.34e-14 | 3.46e-12 | 1.32e-11 | 9.97e-09 | 2.74e-08 | 1.14e-05 | 8.32e-05 | 0.00307  |
| 18            | 4.26e-16 | 4.23e-17 | 7.54e-17 | 6.24e-17 | 1.28e-13 | 9.64e-12 | 1.55e-10 | 2.07e-08 | 1.8e-07  | 1.62e-05 | 0.000197 |
| 19            | 1.44e-15 | 8.81e-17 | 4.29e-16 | 9.12e-19 | 2.47e-15 | 7.26e-13 | 1.94e-11 | 8.78e-10 | 3.4e-08  | 6.92e-07 | 1.97e-05 |
| 20            | 5.52e-16 | 1.88e-17 | 1.82e-16 | 1.13e-18 | 3.38e-15 | 5.89e-16 | 3.52e-12 | 2.3e-11  | 3.47e-09 | 4.17e-08 | 1.99e-06 |
| 21            | 3.76e-17 | 1.38e-17 | 3.02e-18 | 5.37e-17 | 3.47e-16 | 6.02e-15 | 2.49e-14 | 1.22e-11 | 5.3e-12  | 1.06e-08 | 3.01e-08 |

Table S3: Franck-Condon Factors for  $O_2^+(X) - O_2(X)$ . Taken from ref. 1.

Table S4: Franck-Condon Factors for  $O_2^+(a) - O_2(X)$ . Taken from ref. 1.

| v'/v" | 0       | 1       | 2       | 3       | 4        | 5        | 6        | 7       | 8        | 9       | 10       |
|-------|---------|---------|---------|---------|----------|----------|----------|---------|----------|---------|----------|
| 0     | 0.00987 | 0.0544  | 0.138   | 0.215   | 0.23     | 0.178    | 0.105    | 0.0472  | 0.0167   | 0.00464 | 0.00102  |
| 1     | 0.036   | 0.124   | 0.158   | 0.0732  | 5.34e-4  | 0.053    | 0.152    | 0.179   | 0.129    | 0.0644  | 0.0236   |
| 2     | 0.072   | 0.142   | 0.0601  | 0.00233 | 0.0829   | 0.0951   | 0.0132   | 0.0237  | 0.123    | 0.168   | 0.126    |
| 3     | 0.105   | 0.102   | 0.00125 | 0.063   | 0.0698   | 2.02e-4  | 0.0616   | 0.0879  | 0.0121   | 0.0259  | 0.125    |
| 4     | 0.124   | 0.0461  | 0.0198  | 0.0767  | 0.00327  | 0.051    | 0.0584   | 1.05e-4 | 0.0665   | 0.0739  | 0.00335  |
| 5     | 0.128   | 0.00865 | 0.0579  | 0.0311  | 0.0203   | 0.0608   | 8.72e-05 | 0.0584  | 0.0389   | 0.00608 | 0.0794   |
| 6     | 0.118   | 4.45e-4 | 0.0688  | 8.06e-4 | 0.0557   | 0.0117   | 0.0351   | 0.0408  | 0.00533  | 0.0658  | 0.0144   |
| 7     | 0.101   | 0.013   | 0.0505  | 0.0108  | 0.0468   | 0.00405  | 0.0521   | 1.12e-4 | 0.0515   | 0.0148  | 0.0272   |
| 8     | 0.0817  | 0.0327  | 0.0234  | 0.0357  | 0.0154   | 0.0324   | 0.019    | 0.0244  | 0.0315   | 0.0105  | 0.0502   |
| 9     | 0.0629  | 0.0494  | 0.00483 | 0.0486  | 0.00909  | 0.0446   | 6.92e-06 | 0.044   | 3.33e-4  | 0.0443  | 0.00512  |
| 10    | 0.0467  | 0.0587  | 1.05e-4 | 0.043   | 0.00832  | 0.0292   | 0.0147   | 0.0243  | 0.0161   | 0.0268  | 0.0125   |
| 11    | 0.0338  | 0.0605  | 0.00599 | 0.0272  | 0.0253   | 0.00821  | 0.0333   | 0.00222 | 0.036    | 0.00103 | 0.0379   |
| 12    | 0.024   | 0.0567  | 0.0164  | 0.0116  | 0.0361   | 5.45e-07 | 0.0338   | 0.00393 | 0.0277   | 0.00912 | 0.0248   |
| 13    | 0.0168  | 0.0497  | 0.0265  | 0.00228 | 0.0359   | 0.00595  | 0.0199   | 0.0194  | 0.00779  | 0.0275  | 0.00263  |
| 14    | 0.0116  | 0.0416  | 0.0334  | 5.7e-05 | 0.0276   | 0.0175   | 0.00573  | 0.0292  | 2.88e-05 | 0.0284  | 0.00365  |
| 15    | 0.00805 | 0.0336  | 0.0366  | 0.0029  | 0.0168   | 0.0264   | 3.9e-05  | 0.0265  | 0.00724  | 0.0145  | 0.0184   |
| 16    | 0.00558 | 0.0266  | 0.0366  | 0.00805 | 0.00776  | 0.029    | 0.00299  | 0.0162  | 0.0185   | 0.00236 | 0.0257   |
| 17    | 0.00388 | 0.0207  | 0.0344  | 0.0133  | 0.00219  | 0.0261   | 0.0101   | 0.00604 | 0.0243   | 5.91e-4 | 0.0199   |
| 18    | 0.00272 | 0.016   | 0.031   | 0.0175  | 9.01e-05 | 0.0202   | 0.017    | 6.51e-4 | 0.0224   | 0.0069  | 0.0089   |
| 19    | 0.00193 | 0.0122  | 0.0271  | 0.0201  | 4.92e-4  | 0.0136   | 0.021    | 4.82e-4 | 0.0157   | 0.0147  | 0.00136  |
| 20    | 0.00138 | 0.00941 | 0.0231  | 0.0212  | 0.00227  | 0.00789  | 0.0217   | 0.00368 | 0.00832  | 0.0193  | 0.000343 |
| 21    | 0.001   | 0.00724 | 0.0195  | 0.0211  | 0.00451  | 0.00382  | 0.0199   | 0.00794 | 0.00292  | 0.0193  | 0.00409  |

| v'/v" | 0       | 1       | 2       | 3        | 4       | 5       | 6        | 7        | 8        | 9       | 10       |
|-------|---------|---------|---------|----------|---------|---------|----------|----------|----------|---------|----------|
| 0     | 0.00284 | 0.0195  | 0.0634  | 0.129    | 0.186   | 0.202   | 0.171    | 0.116    | 0.0643   | 0.0296  | 0.0114   |
| 1     | 0.0123  | 0.06    | 0.123   | 0.131    | 0.0634  | 0.003   | 0.0249   | 0.101    | 0.153    | 0.144   | 0.0988   |
| 2     | 0.0291  | 0.0971  | 0.112   | 0.0373   | 0.00221 | 0.0622  | 0.0925   | 0.0375   | 1.83e-4  | 0.0474  | 0.12     |
| 3     | 0.05    | 0.109   | 0.055   | 0.00024  | 0.055   | 0.0671  | 0.00689  | 0.0234   | 0.0804   | 0.0552  | 0.00258  |
| 4     | 0.0697  | 0.0923  | 0.00974 | 0.0292   | 0.0644  | 0.00734 | 0.0256   | 0.0655   | 0.0165   | 0.0111  | 0.0695   |
| 5     | 0.0843  | 0.0611  | 0.00101 | 0.057    | 0.0239  | 0.0105  | 0.0565   | 0.013    | 0.0164   | 0.0605  | 0.019    |
| 6     | 0.0918  | 0.0304  | 0.0175  | 0.0514   | 2.3e-4  | 0.0423  | 0.0251   | 0.00696  | 0.051    | 0.0126  | 0.0154   |
| 7     | 0.0925  | 0.00951 | 0.0375  | 0.0265   | 0.011   | 0.043   | 1.92e-4  | 0.0382   | 0.021    | 0.00824 | 0.0478   |
| 8     | 0.0878  | 6.28e-4 | 0.0474  | 0.00582  | 0.0312  | 0.0189  | 0.0127   | 0.036    | 7.87e-05 | 0.0383  | 0.0145   |
| 9     | 0.0797  | 0.00143 | 0.0449  | 8.8e-05  | 0.0387  | 0.00154 | 0.0319   | 0.0108   | 0.0177   | 0.0284  | 0.00183  |
| 10    | 0.0698  | 0.00788 | 0.0344  | 0.00646  | 0.0309  | 0.00285 | 0.0326   | 3.67e-05 | 0.0327   | 0.00384 | 0.0241   |
| 11    | 0.0596  | 0.0163  | 0.0215  | 0.017    | 0.0167  | 0.0146  | 0.0185   | 0.00944  | 0.0243   | 0.0029  | 0.0306   |
| 12    | 0.0499  | 0.0242  | 0.0106  | 0.0254   | 0.0051  | 0.0246  | 0.00477  | 0.0223   | 0.00755  | 0.0176  | 0.0143   |
| 13    | 0.0412  | 0.0303  | 0.00348 | 0.0288   | 0.00019 | 0.0268  | 6.14e-07 | 0.0258   | 3.1e-05  | 0.0254  | 0.000947 |
| 14    | 0.0336  | 0.034   | 3.24e-4 | 0.0273   | 0.00135 | 0.0221  | 0.00362  | 0.0196   | 0.00421  | 0.0198  | 0.00289  |
| 15    | 0.0272  | 0.0357  | 0.00033 | 0.0226   | 0.00586 | 0.0142  | 0.0105   | 0.00997  | 0.0127   | 0.00877 | 0.0125   |
| 16    | 0.0219  | 0.0356  | 0.00237 | 0.0167   | 0.011   | 0.00691 | 0.0161   | 0.0027   | 0.0182   | 0.0013  | 0.0188   |
| 17    | 0.0176  | 0.0342  | 0.0054  | 0.0109   | 0.0149  | 0.00207 | 0.0182   | 2.64e-05 | 0.0183   | 3.51e-4 | 0.0177   |
| 18    | 0.0141  | 0.0319  | 0.00862 | 0.00618  | 0.0168  | 1.07e-4 | 0.0169   | 0.00123  | 0.0142   | 0.00392 | 0.0117   |
| 19    | 0.0113  | 0.0292  | 0.0115  | 0.00287  | 0.0169  | 4.03e-4 | 0.0136   | 0.00435  | 0.0088   | 0.00851 | 0.00534  |
| 20    | 0.00907 | 0.0262  | 0.0137  | 9.25e-4  | 0.0155  | 0.002   | 0.00953  | 0.00756  | 0.00412  | 0.0116  | 0.00123  |
| 21    | 0.00724 | 0.0231  | 0.0151  | 9.62e-05 | 0.0132  | 0.00398 | 0.00581  | 0.00972  | 0.00119  | 0.0124  | 3.85e-08 |

Table S5: Franck-Condon Factors for  $O_2^+(A) - O_2(X)$ . Taken from ref. 1.

Table S6: Franck-Condon Factors for  $O_2^+$  (b) –  $O_2$  (X). Taken from ref. 1.

| v'/v" | 0        | 1        | 2        | 3       | 4       | 5       | 6       | 7        | 8        | 9        | 10       |
|-------|----------|----------|----------|---------|---------|---------|---------|----------|----------|----------|----------|
| 0     | 0.411    | 0.376    | 0.161    | 0.0431  | 0.00821 | 0.00119 | 1.36e-4 | 1.25e-05 | 9.81e-07 | 6.34e-08 | 3.54e-09 |
| 1     | 0.336    | 0.00278  | 0.234    | 0.261   | 0.123   | 0.0349  | 0.00696 | 0.00105  | 1.24e-4  | 1.2e-05  | 9.46e-07 |
| 2     | 0.162    | 0.169    | 0.0818   | 0.0485  | 0.231   | 0.196   | 0.0831  | 0.0225   | 0.00443  | 6.62e-4  | 7.88e-05 |
| 3     | 0.0613   | 0.209    | 0.0169   | 0.162   | 0.00255 | 0.12    | 0.218   | 0.141    | 0.0528   | 0.0134   | 0.00252  |
| 4     | 0.0204   | 0.135    | 0.128    | 0.0165  | 0.119   | 0.0644  | 0.0225  | 0.172    | 0.185    | 0.0965   | 0.032    |
| 5     | 0.00636  | 0.0653   | 0.154    | 0.029   | 0.0859  | 0.032   | 0.122   | 0.00327  | 0.0854   | 0.187    | 0.143    |
| 6     | 0.00193  | 0.0272   | 0.111    | 0.105   | 0.0143  | 0.112   | 6.48e-4 | 0.106    | 0.051    | 0.015    | 0.14     |
| 7     | 5.83e-4  | 0.0104   | 0.0615   | 0.122   | 0.0339  | 0.0424  | 0.0672  | 0.0397   | 0.0417   | 0.1      | 0.00359  |
| 8     | 1.79e-4  | 0.00383  | 0.0297   | 0.0934  | 0.088   | 1.07e-4 | 0.084   | 0.0109   | 0.0846   | 8.29e-4  | 0.0949   |
| 9     | 5.6e-05  | 0.00138  | 0.0132   | 0.0574  | 0.1     | 0.0329  | 0.0221  | 0.0733   | 0.00535  | 0.076    | 0.0203   |
| 10    | 1.8e-05  | 5.01e-4  | 0.00563  | 0.0311  | 0.0812  | 0.0729  | 9.22e-4 | 0.0611   | 0.0259   | 0.0448   | 0.0271   |
| 11    | 5.96e-06 | 1.83e-4  | 0.00235  | 0.0156  | 0.0544  | 0.0841  | 0.0282  | 0.0136   | 0.0661   | 2.73e-06 | 0.0694   |
| 12    | 2e-06    | 6.74e-05 | 9.68e-4  | 0.00752 | 0.0325  | 0.0721  | 0.0591  | 9.75e-4  | 0.047    | 0.0311   | 0.0221   |
| 13    | 6.79e-07 | 2.51e-05 | 3.99e-4  | 0.00352 | 0.0181  | 0.0523  | 0.0706  | 0.0214   | 0.011    | 0.0561   | 0.00118  |
| 14    | 2.27e-07 | 9.39e-06 | 1.65e-4  | 0.00162 | 0.00966 | 0.0342  | 0.0646  | 0.046    | 0.00033  | 0.0393   | 0.0286   |
| 15    | 7.2e-08  | 3.47e-06 | 6.78e-05 | 7.42e-4 | 0.005   | 0.0209  | 0.0507  | 0.0583   | 0.0138   | 0.0115   | 0.0466   |
| 16    | 0.411    | 0.376    | 0.161    | 0.0431  | 0.00821 | 0.00119 | 1.36e-4 | 1.25e-05 | 9.81e-07 | 6.34e-08 | 3.54e-09 |

| Е <sub>см</sub> | <i>v</i> ′ = 0 | <i>v'</i> = 1 | <i>v′</i> = 2 | <i>v′</i> = 3 | <i>v</i> ′ = 4 |
|-----------------|----------------|---------------|---------------|---------------|----------------|
| 9.8             | 0.434          | 0.263         | 0.191         | 0.068         | 0.043          |
| 19.6            | 0.433          | 0.277         | 0.186         | 0.072         | 0.032          |
| 39.2            | 0.426          | 0.294         | 0.176         | 0.077         | 0.027          |
| 58.9            | 0.457          | 0.283         | 0.163         | 0.074         | 0.022          |
| 118             | 0.482          | 0.276         | 0.153         | 0.063         | 0.026          |
| 235.5           | 0.506          | 0.278         | 0.137         | 0.069         | 0.009          |
| 471.1           | 0.502          | 0.302         | 0.119         | 0.076         | 0.001          |
| 942.3           | 0.498          | 0.289         | 0.138         | 0.062         | 0.014          |

Table S7: Averaged Best Fit Populations Derived from O<sub>2</sub><sup>+</sup> (*b-a*) fitting. Energy in eV.

Table S8: Simulated populations for the O<sub>2</sub><sup>+</sup> (b) state using the best-fit MCLZ model

| Есм   | <i>v</i> ′ = 0 | <i>v'</i> = 1 | <i>v′</i> = 2 | <i>v′</i> = 3 | <i>v</i> ′ = 4 |
|-------|----------------|---------------|---------------|---------------|----------------|
| 9.8   | 0.392          | 0.270         | 0.155         | 0.107         | 0.076          |
| 19.6  | 0.419          | 0.299         | 0.146         | 0.085         | 0.051          |
| 39.3  | 0.442          | 0.311         | 0.137         | 0.071         | 0.039          |
| 58.9  | 0.461          | 0.319         | 0.130         | 0.061         | 0.029          |
| 117.8 | 0.485          | 0.325         | 0.121         | 0.049         | 0.020          |
| 235.6 | 0.500          | 0.329         | 0.115         | 0.041         | 0.014          |
| 471.2 | 0.509          | 0.333         | 0.111         | 0.037         | 0.011          |
| 942.3 | 0.513          | 0.336         | 0.108         | 0.034         | 0.009          |

Table S9: Averaged Best Fit Experimental Populations, Standard Deviations and Modeled Pop. derived from  $O_2^+(A-X)$  fitting.

| v  | E <sub>cm</sub> = 37 eV | σ      | Model | E <sub>cm</sub> = 58 eV | σ      | Model | E <sub>cm</sub> = 233 eV | σ      | Model |
|----|-------------------------|--------|-------|-------------------------|--------|-------|--------------------------|--------|-------|
| 0  | 0.013                   | 0.0000 | 0.019 | 0.013                   | 0.0000 | 0.016 | 0.014                    | 0.0005 | 0.011 |
| 1  | 0.024                   | 0.0004 | 0.031 | 0.025                   | 0.0000 | 0.030 | 0.039                    | 0.0003 | 0.026 |
| 2  | 0.038                   | 0.0005 | 0.050 | 0.046                   | 0.0000 | 0.050 | 0.063                    | 0.0017 | 0.049 |
| 3  | 0.039                   | 0.0004 | 0.066 | 0.049                   | 0.0000 | 0.067 | 0.066                    | 0.0009 | 0.069 |
| 4  | 0.043                   | 0.0005 | 0.084 | 0.057                   | 0.0005 | 0.088 | 0.062                    | 0.0019 | 0.097 |
| 5  | 0.055                   | 0.0005 | 0.075 | 0.071                   | 0.0005 | 0.077 | 0.062                    | 0.0016 | 0.082 |
| 6  | 0.068                   | 0.0005 | 0.078 | 0.081                   | 0.0008 | 0.078 | 0.071                    | 0.0022 | 0.076 |
| 7  | 0.074                   | 0.0005 | 0.085 | 0.078                   | 0.0010 | 0.084 | 0.072                    | 0.0022 | 0.079 |
| 8  | 0.087                   | 0.0008 | 0.059 | 0.093                   | 0.0010 | 0.057 | 0.094                    | 0.0040 | 0.054 |
| 9  | 0.086                   | 0.0011 | 0.069 | 0.083                   | 0.0013 | 0.071 | 0.071                    | 0.0030 | 0.077 |
| 10 | 0.078                   | 0.0018 | 0.057 | 0.072                   | 0.0017 | 0.058 | 0.076                    | 0.0071 | 0.060 |
| 11 | 0.063                   | 0.0013 | 0.041 | 0.062                   | 0.0018 | 0.041 | 0.060                    | 0.0020 | 0.044 |
| 12 | 0.067                   | 0.0008 | 0.032 | 0.051                   | 0.0020 | 0.031 | 0.057                    | 0.0057 | 0.031 |
| 13 | 0.054                   | 0.0024 | 0.053 | 0.050                   | 0.0049 | 0.056 | 0.022                    | 0.0067 | 0.062 |
| 14 | 0.046                   | 0.0012 | 0.043 | 0.047                   | 0.0060 | 0.044 | 0.045                    | 0.0087 | 0.048 |
| 15 | 0.057                   | 0.0023 | 0.042 | 0.024                   | 0.0080 | 0.042 | 0.022                    | 0.0117 | 0.041 |
| 16 | 0.023                   | 0.0058 | 0.032 | 0.050                   | 0.0086 | 0.031 | 0.048                    | 0.0166 | 0.028 |
| 17 | 0.034                   | 0.0117 | 0.026 | 0.0003                  | 0.0008 | 0.024 | 0.023                    | 0.0233 | 0.021 |
| 18 | 0.023                   | 0.0121 | 0.024 | 0.011                   | 0.0045 | 0.023 | 0.005                    | 0.0039 | 0.020 |
| 19 | 0.006                   | 0.0088 | 0.017 | 0.002                   | 0.0039 | 0.016 | 0.000                    | 0.0000 | 0.013 |
| 20 | 0.005                   | 0.0084 | 0.015 | 0.013                   | 0.0039 | 0.014 | 0.002                    | 0.0154 | 0.011 |
| 21 | 0.012                   | 0.0089 |       | 0.019                   | 0.0027 |       | 0.022                    | 0.0102 |       |

Figure S3: Simulated charge-transfer cross sections into three electronic states of  $O_2^+$  (solid symbols) and the experimental emission excitation cross sections measured for  $O_2^+$  (A-X) and (b-a) (open symbols). Simulated values are the result from the MCLZ parameters that best reproduce the vibrational populations and have the cross sections at low collision energy within a factor of 2.





Figure S4: Schematic of the MCLZ simulation approach. Only selected crossings and simulation outputs are shown. Energies are in eV, distances in Angstroms. Example crossings and probabilities are shown for a perpendicular approach orientation. Integration of the results shown for selected states in the bottom table properly account for both perpendicular and parallel orientations, as described in the report.

| Total Flux: | 271.716   |         |          |
|-------------|-----------|---------|----------|
| b, v' =     | #         | A, v' = | #        |
| 0           | 1.62553   | 0       | 0.168574 |
| 1           | 1.1452    | 1       | 0.281315 |
| 2           | 0.502549  | 2       | 0.4519   |
| 3           | 0.261741  | 3       | 0.596767 |
| 4           | 0.141719  | 4       | 0.754102 |
| 5           | 0.100674  | 5       | 0.677365 |
| 6           | 0.081888  | 6       | 0.703827 |
| 7           | 0.0445911 | 7       | 0.764595 |

## **References:**

<sup>1</sup> Gilmore, F. R., Laher, R. R. and Espy, P. J., "Frank-Condon Factors, R-Centroids, Electronic Transition Moments, and Einstein Coefficients for Many Nitrogen and Oxygen Band Systems," *J. Phys. Chem. Ref. Data*, Vol. 21, No. 1992, pp. 1005.