Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supporting Information

Boron based layered electrode materials for metal-ion batteries

Kuan-Rong Hao^{a, b}, Qing-Bo Yan^{b*}, Gang Su^{a, c*}

^aSchool of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

^bCenter of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.

^cKavli Institute for Theoretical Sciences, and CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

*Correspondence authors. Email: yan@ucas.ac.cn; gsu@ucas.ac.cn

Table of Contents

1. The geometrical structures of various lithium borides	3
2. The migration and phonon dispersion curves of LiB ₄	4
3. Phonon dispersion curves for Na/MgAlB ₄ and Na/MgGaB ₄	5
4. The electron density of states for Na/MgAlB ₄ and Na/MgGaB ₄	6
5. The electron band structures of M_xXB_4 ($M = Li$, Na, Mg; $X = Al$, Ga)	7
6. The volumetric change of Li _x AlB ₄	8
7. The calculated elastic constants of M_xXB_4 ($M = Li$, Na, Mg; $X = Al$, Ga)	9
8. The density states of phonon for LiAl/GaB ₄ and Li ₂ Al/GaB ₄	.10

1. The geometrical structures of various lithium borides

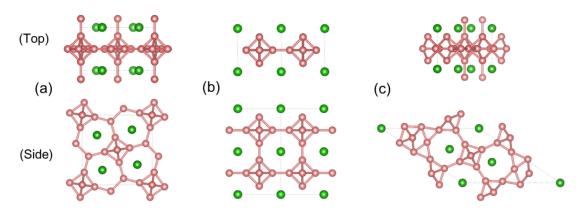


Figure S1. Top and side views of the geometric structures of lithium borides (a) MB_4 ; (b) MB_6 ; (c) M_3B_{20} (M = Li, Na), respectively;

We perform a systematical investigation on various boron based layered compounds. As shown in Fig. S1, because of the structure features formed by boron octahedron and boron rings, typical metal borides including MB₄, MB₆ and M₃B₂₀ (M = Li, Na) have been considered. However, due to the dynamic instability of LiB₄, LiB₆ and Li₃B₂₀ and high energy barrier of Na ion in NaB₄, NaB₆, Na₃B₂₀, they are restricted to the metal electrode materials.

2. The migration and phonon dispersion curves of LiB₄

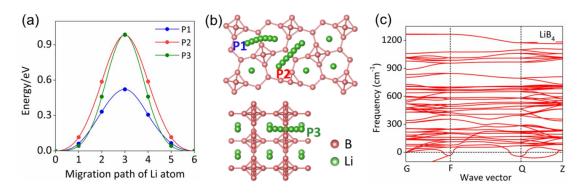


Figure S2. The diffusion energy barriers (a), three possible migration paths (b) of Li ions along the P1, P2, P3 and (c) phonon dispersion curve of LiB₄.

Here, we show some results of LiB₄ as an example, as shown in Fig. S2 (a) and (b), with the diffusion path P1 indicated. It can be seen that just 0.52 eV energy barrier is needed to be overcome for Li ions, which is lower than that in LiAlB₄. The barrier values of 0.98 eV and 0.99 eV for P2 and P3 paths were obtained, which are obviously higher than that along the P1 path. In addition, the phonon dispersion illustrates apparent imaginary modes. Thus, this compound fails in serving as electable electrode material.

3. Phonon dispersions of Na/MgAlB₄, Na/MgGaB₄

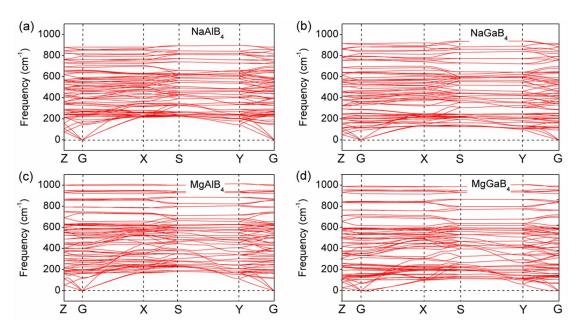


Figure S3. The calculated phonon dispersions for (a) NaAlB₄, (b) NaGaB₄, (c) MgAlB₄ and (d) MgGaB₄, respectively.

In order to confirm the dynamic stability, firstly, the phonon dispersions are calculated for the structures of Na/MgAlB₄, Na/MgGaB₄, as presented in Fig. S3. No imaginary phonon modes are found, indicating that they all are dynamically stable.

4. The electron density of states of Na/MgAlB₄ and Na/MgGaB₄

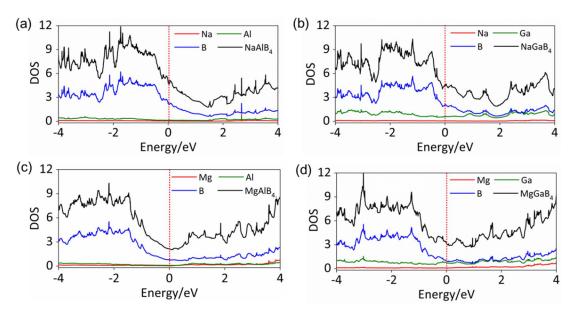


Figure S4. The total and projected electron density of states (DOS) of (a) NaAlB₄, (b) NaGaB₄, (c) MgAlB₄ and (d) MgGaB₄, respectively.

As shown in Fig. S4, the calculated electron structures illustrate that they are metallic with electronic states existing on the Fermi level. The curves of DOS show that the contributions of the s electrons of Na and Mg atoms to the density of states especially valence states are very small and the boron electron states are prominent. Similarly, a comparison between MAlB₄ and MGaB₄ (M = Li, Na) also reveals that the DOS of Ga atoms are more dominant than that of Al atoms.

5. The electron band structures of M_xXB_4 (M = Li, Na, Mg; X = Al, Ga)

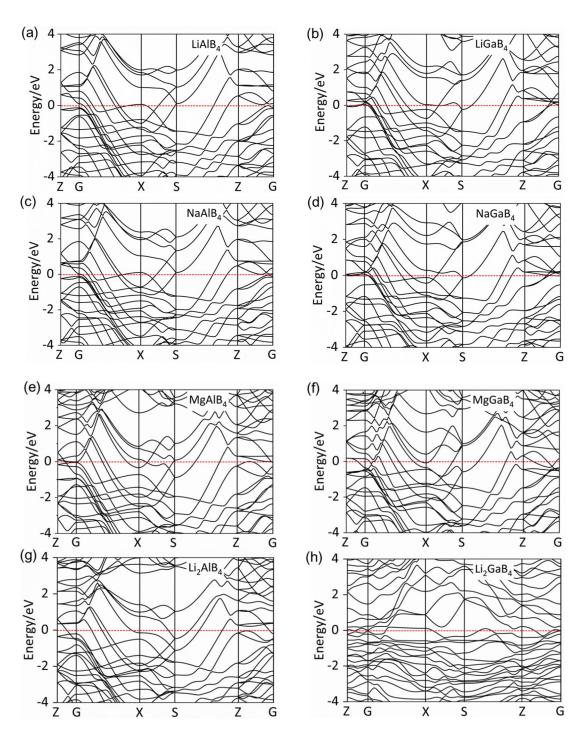


Figure S5. The electron band structures of (a) LiAlB₄, (b) LiGaB₄, (c) NaAlB₄, (d) NaGaB₄, (e) MgAlB₄, (f) MgGaB₄, (g) Li₂AlB₄ and (h) Li₂GaB₄, respectively.

6. The volume change of Li_xAlB₄

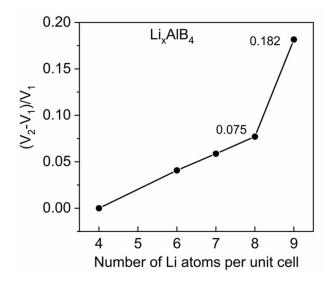


Figure S6. The volume change rate of LixAlB4.

In order to further illustrate the structural stability of Li_xAlB₄ during the process of lithium ions de-intercalation, the volume expansion was measured by $\eta = (V_2-V_1)/V_1$ (V_1 is the volume of Li₄X₄B₁₆, V_2 is the volume of Li_xX₄B₁₆(x = 6, 8, 7, 9)). For Li_xAl₄B₁₆(x = 4, 6, 7, 8), the structure remains intact and η goes linearly as shown in Fig. S6, and the value of η estimated as 7.5% for Li₈Al₄B₁₆ goes well with the volume expansion tolerance. While x = 9, the structure is obviously distorted and η reaches to 18.2%, which may goes beyond the lattice distortion and expansion tolerance and may be inappropriate for practical applications.

7. The calculated elastic constants of M_xXB_4 (M = Li, Na, Mg; X = Al, Ga)

	LiAlB ₄	NaAlB ₄	MgAlB ₄	LiGaB ₄	NaGaB ₄	MgGaB ₄	Li ₂ AlB ₄	Li ₂ GaB ₄
C ₁₁	271.25	262.22	380.99	283.46	257.52	246.86	339.29	85.026
C ₂₂	372.67	358.82	431.89	348.04	335.40	386.31	284.78	297.69
C ₃₃	363.11	375.84	421.47	343.99	354.48	369.79	358.83	259.62
C ₄₄	46.92	71.32	38.59	25.58	46.26	5.45	188.58	39.3
C ₅₅	184.41	176.63	200.78	163.77	163.11	167.13	28.51	131.92
C ₆₆	45.24	68.19	42.96	20.31	414.54	11.50	15.83	53.27
C ₁₂	38.51	41.15	1.37	37.15	39.04	35.49	151.25	43.98
C ₁₃	36.21	41.11	7.40	35.44	43.65	44.89	1.05	60.30
C ₂₃	87.75	65.80	126.03	93.97	74.21	114.47	-19.54	49.82

Table S1. The calculated elastic constants Cij (in GPa) for orthorhombic crystal M_xXB_4 (M = Li, Na, Mg; X = Al, Ga).

As we all know, for a given orthorhombic crystal, there are nine independent elastic constants (C_{11} , C_{22} , C_{33} , C_{44} , C_{55} , C_{66} , C_{12} , C_{13} , C_{23}), which should satisfy the Born stability criteria for mechanical stability as flowing:

$$C_{ii} > 0 \ (i = 1, 2, 3, 4, 5, 6);$$

 $C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23}) > 0;$
 $C_{11} + C_{22} - 2C_{12} > 0;$ $C_{11} + C_{33} - 2C_{13} > 0;$ $C_{22} + C_{33} - 2C_{23} > 0;$

The calculated elastic constants for M_xXB_4 (M = Li, Na, Mg; X = Al, Ga) are listed in Table S1, which shows that all of these compounds satisfy all above mechanical stability conditions. Therefore, they are mechanically stable.

8. The density states of phonon for LiAl/GaB4 and Li2Al/GaB4

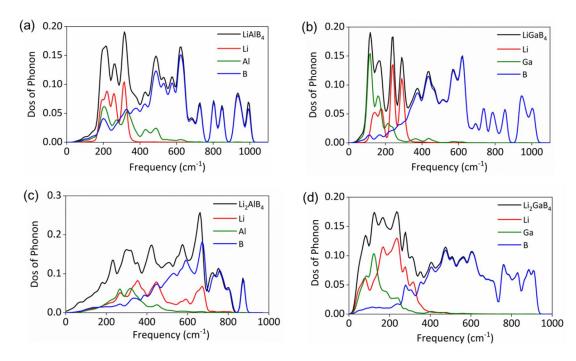


Figure S7. The total and projected phonon density of states for (a) LiAlB₄, (b) LiGaB₄, (c) Li₂AlB₄ and (d) Li₂GaB₄, respectively.

As shown in Fig. S7, the phonon density states of Ga atoms mainly contribute in the low-frequency region and are larger than that of Al atoms. From Fig. S7 (a) (b) and (d), it is obviously seen that the primary contributions of phonon density of states in the low-frequency region come from Li and Al/Ga atoms, and the high frequency (>400 cm⁻¹) is mainly from the boron atoms. In Li₂AlB₄, the distribution of DOS of phonon for Li atoms stretches across the range of 200 cm⁻¹ - 700 cm⁻¹ due to its structure.