Supplemental Information

Theoretical Study on the Microscopic Mechanism of Lignin Solubilization in Keggin-type Polyoxometalate Ionic Liquids

Zhaoyang Ju^{a,b,c}, Weihua Xiao^a, Xiaoqian Yao^f, Xin Tan^f, Blake A. Simmons^{c,d}, Kenneth L. Sale^{c,e*}, Ning Sun^{b*}

^aEngineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, China

^bAdvanced Biofuel Process Demonstration Unit, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

^cJoint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

^dLawrence Berkeley National Laboratory, Berkeley, CA, USA
 ^eSandia National Laboratories, Livermore, CA, USA
 ^fCAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China

Content

- 1. **Fig. S1**: Conformational isomers of GGE model compound, and the relative energies to GGE-1 are labeled in parentheses.
- 2. **Fig. S2:** Optimized the geometries of GGE and isolated anion/cation (A-C) GGE-POM, (D-F) GGE-C4C1Im (G-I) GGE-OAc and (J-L) GGE-H₂O.
- 3. **Fig. S3:** Optimized the geometry of GGE-[C4C11m][OAc].
- 4. **Fig. S4:** Isosurfaces (isovalue = 0.5 a.u.) of (A) GGE-[C4C11m]₃[PW₁₂O₄₀] and (B) GGE-[C4C11m][OAc]. Blue indicates strong attractive interaction like H-bonds, green indicates the π - π interaction and red indicates steric hindrance.
- 5. **Table S1:** The selected bond distance (Å) of the isolated $[PW_{12}O_{40}]^{3-}$ anion
- 6. **Table S2:** The corresponding H-Bonds lengths (in angstroms), bond angles (in degrees) and interaction energies (in kcal/mol) of [C4C11m]⁺ [PW₁₂O₄₀]³⁻ structures.
- 7. **Table S3:** Bond lengths, bond energies E_{HB} , electron densities $\rho(r)$ and Laplacian values $\nabla^2 \rho(r)$ for the H-bonds of the [C4C1Im]⁺ [PW₁₂O₄₀]³⁻ complex of the POM-ILs.
- 8. **Table S4:** The corresponding H-Bonds lengths (in angstroms), bond angles (in degrees) and interaction energies (in kcal/mol) of [C4C11m]₃[PW₁₂O₄₀] ion pairs.
- 9. **Table S5:** The NPA charge (a.u.) of [C4C11m]₃[PW₁₂O₄₀] ion pairs corresponding to the geometry in Fig. 3 (B).
- 10. **Table S6:** The corresponding H-Bonds lengths (in angstroms), bond angles (in degrees) and interaction energies of (A-C) GGE-POM, (D-F) GGE-C4C1Im (G-I) GGE-OAc and (J-L) GGE-H₂O.
- 11. Table S7: Changes in bond length (in angstroms) for GGE while it interacts with POM
- 12. Table S8: Energy decomposition of interaction energies (in kcal/mol) for GGE and POM, OAc, C4C1Im and H_2O
- 13. **Table S9:** The corresponding H-Bonds lengths (in angstroms), bond angles (in degrees) and interaction energies (in kcal/mol) of GGE-[C4C11m]₃[PW₁₂O₄₀] structures.
- 14. **Table S10:** Changes in bond length (in angstroms) for GGE while more cations were introduced in the system corresponding to the structures of Fig. 5.
- 15. **Table S11**: The corresponding H-Bonds lengths (in angstroms), bond angles (in degrees) and interaction energies (in kcal/mol) of GGE-[C4C11m][OAc] structures.

Fig. S1 Conformational isomers of GGE model compound, and the relative energies to GGE-1 are labeled in parentheses.

Fig. S2 Optimized geometries of GGE and isolated anion/cation: GGE-POM (A-C), GGE-C4C11m (D-F), GGE-OAc (G-I), and GGE-H₂O (J-L).

Fig. S3 Optimized the geometry of GGE-[C4C1Im][OAc].

Fig. S4 Isosurfaces (isovalue = 0.5 a.u.) of (A) GGE-[C4C11m]₃[PW₁₂O₄₀] and (B) GGE-[C4C11m][OAc]. Blue indicates strong attractive interaction like H-bonds, green indicates the π - π interaction and red indicates steric hindrance.

bond	DFT	expt ^a
P-O _a	1.55	1.53
W-O _d	1.71	1.70
W-O _{b1}	1.93	1.91
W-O _{b2}	1.92	1.91

2.46

2.44

Table S1 The selected bond distance (Å) of the isolated $[PW_{12}O_{40}]^{3-}$ anion

W-O_a

^aReference 40

Table S2 The corresponding H-Bonds lengths (in angstroms), bond angles (in degrees) and interaction energies (in kcal/mol) of $[C4C1Im]^+$ $[PW_{12}O_{40}]^{3-}$ structures.

-	, E	3 2						
Entry	H-bonds	Length	Angle	ΔE_1^a	ΔE_2^a	∆ BSSE ^a	ΔE_{2C}^{a}	ΔE_{2CR}^{a}
(A)	C1-H1Ot1	2.23	164.30	-167.91	-171.91	5.71	-166.20	0.00
	C2-H2Ob1	2.04	149.43					
	C3-H3Ot2	2.55	113.70					
(B)	C1-H1Ot1	2.23	136.74	-157.95	-161.16	4.21	-156.95	4.21
	C2-H2Ob1	2.74	155.60					
	C3-H3Ot2	2.60	107.92					
(C)	C1-H1Ot1	2.51	133.09	-162.50	-166.49	5.51	-160.98	5.21
	C2-H2Ot2	1.99	144.81					
	C3-H3Ot2	2.26	148.45					
(D)	C2-H2Ot1	1.94	152.85	-156.67	-159.69	4.80	-154.89	11.31
	C3-H3Ot1	2.45	146.82					

^a ΔE_1 , ΔE_2 , $\Delta BSSE$, ΔE_{2C} and ΔE_{2CR} represent the interaction energies using M06L/6-31g** (LANL2DZ basis sets on metal atoms), the interaction energies using M06L/def2-TZVP, the values of BSSE, the interaction energies (ΔE_2) corrected by BSSE and the relative interaction energies (ΔE_{2C}).

Entry	Type of H-bonds	V(r) (a.u.)	E _{HB} (kJ/mol)	ρ(r) (a.u.)	$ abla^2 ho(\mathbf{r})(\mathbf{a.u.})$
(A)	C1-H1Ot1	-0.011	-14.92	0.015	0.041
	C2-H2Ob1	-0.018	-23.03	0.023	0.066
	C3-H3Ot2	-0.006	-8.27	0.009	0.034
(B)	C1-H1Ot1	-0.012	-15.30	0.016	0.051
	C2-H2Ob1	-0.011	-14.81	0.016	0.052
	C3-H3Ot2	-0.006	-8.12	0.009	0.036
(C)	C1-H1Ot1	-0.006	-7.71	0.009	0.031
	C2-H2Ot2	-0.020	-26.48	0.026	0.080
	C3-H3Ot2	-0.011	-14.87	0.015	0.048
(D)	C2-H2Ot1	-0.022	-29.05	0.028	0.086
	C3-H3Ot1	-0.007	-9.43	0.010	0.035

Table S3 Bond lengths, bond energies E_{HB} , electron densities $\rho(r)$ and Laplacian values $\nabla^2 \rho(r)$ for the H-bonds of the [C4C11m]⁺ [PW₁₂O₄₀]³⁻ complex of the POM-ILs.

Table S4 The corresponding H-Bonds lengths (in angstroms), bond angles (in degrees) and interaction energies (in kcal/mol) of $[C4C1Im]_3[PW_{12}O_{40}]$ ion pairs.

Entry	H-bonds	Length	Angle	ΔE_1^a	ΔE_2^a	∆ BSSE ^a	ΔE_{2C}^{a}	ΔE_{2CR}^{a}
(A)	C2-H2Ot1	2.39	98.64	-366.23	-376.42	15.29	-361.14	3.44
	C3-H3Ot1	2.33	160.68					
	C2'-H2'Ob1	2.70	160.04					
	C3'-H3'Ot1	2.33	163.33					
	C2"-H2"Ot3	2.01	149.90					
	C3"-H3"Ot3	2.47	143.40					
(B)	C2-H2Ot1	1.99	157.05	-365.24	-375.81	16.09	-359.72	4.85
	C3-H3Ot1	2.70	143.25					
	C2'-H2'Ot2	2.55	105.09					
	C1"-H1"Ot3	2.50	109.20					
(C)	C2-H2Ob1	2.21	139.91	-369.9	-379.19	14.61	-364.58	0.00
	C1-H1Ot1	2.44	158.97					
	C2-H2'Ot2	2.60	130.15					
	C1-H1"Ot3	2.44	160.67					

^a ΔE_1 , ΔE_2 , $\Delta BSSE$, ΔE_{2C} and ΔE_{2CR} represent the interaction energies using M06L/6-31g** (LANL2DZ basis sets on mental atoms), the interaction energies using M06L/def2-TZVP, the values of BSSE, the interaction energies (ΔE_2) corrected by BSSE and the relative interaction energies (ΔE_{2C}).

	C4C1Im1	C4C1Im2	C4C1Im3	РОМ			
С	-0.695	-0.696	-0.695	Р	2.739	O2-9	-0.704
Н	0.247	0.231	0.245	W1	1.82	O2-10	-0.702
Н	0.232	0.232	0.241	W2-1	1.859	O2-11	-0.705
Н	0.231	0.248	0.227	W2-2	1.859	O2-12	-0.732
С	-0.466	-0.465	-0.461	W2-3	1.817	O2-13	-0.729
Н	0.247	0.244	0.23	W2-4	1.819	O2-14	-0.734
Н	0.24	0.245	0.252	W3-1	1.775	O2-15	-0.713
С	-0.467	-0.468	-0.472	W3-2	1.812	O2-16	-0.703
Н	0.234	0.235	0.233	W4-1	1.819	O2-17	-0.728
Н	0.232	0.232	0.242	W4-2	1.819	O2-18	-0.681
С	-0.253	-0.255	-0.243	W4-3	1.813	O2-19	-0.73
Н	0.262	0.274	0.254	W4-4	1.818	O2-20	-0.729
Н	0.272	0.264	0.269	W5	1.793	O2-21	-0.722
Ν	-0.333	-0.32	-0.335	O1-1	-1.054	O2-22	-0.699
С	0.282	0.269	0.278	01-2	-1.048	O2-23	-0.718
Н	0.275	0.271	0.274	O1-3	-1.054	O2-24	-0.681
Ν	-0.337	-0.33	-0.333	O1-4	-1.046	O3-1	-0.473
С	-0.044	-0.043	-0.045	O2-1	-0.683	03-2-1	-0.523
Н	0.27	0.278	0.269	O2-2	-0.683	O3-2-2	-0.527
С	-0.041	-0.042	-0.038	O2-3	-0.703	O3-2-3	-0.52
Н	0.27	0.275	0.269	O2-4	-0.702	O3-2-4	-0.532
С	-0.486	-0.489	-0.484	O2-5	-0.729	O3-3-1	-0.549
Н	0.276	0.28	0.25	O2-6	-0.683	03-3-2	-0.478
Н	0.249	0.265	0.275	O2-7	-0.686	O3-4-1	-0.545
Н	0.264	0.25	0.265	O2-8	-0.697	O3-4-2	-0.522
						O3-4-3	-0.572
						O3-4-4	-0.538
						O3-5-1	-0.518
Sum	0.961	0.985	0.967				-2.913
Δe	0.039	0.015	0.033				0.087

Table S5 The NPA charge (a.u.) of $[C4C1Im]_3[PW_{12}O_{40}]$ ion pairs corresponding to the geometry in Fig. 3 (B).

Entry	H-bonds	Length	Angle	ΔE_1^a	ΔE_2^a	∆ BSSE ^a	ΔE_{2C}^{a}	ΔE_{2CR}^{a}
(A)	C3-H3Ot1	2.40	130.58	-15.94	-21.81	6.14	-15.68	9.78
	C4-H4Ot2	2.60	112.31					
(B)	C1'-H1'Ot1	1.96	155.89	-24.89	-32.97	7.52	-25.45	0.00
	C3-H3Ot2	2.49	151.83					
	C2'-H2'Ot3	2.64	110.12					
(C)	C4-H4Ot1	2.95	143.49	-23.23	-30.23	6.71	-23.52	1.93
	Oa-HaOt2	1.88	178.06					
	C3'-H3'Ot3	2.53	153.22					
(D)	С2-Н2Оβ	2.35	125.05	-23.52	-19.67	1.64	-18.02	3.07
	С2-Н2Оү	2.34	136.55					
(E)	С1-Н1Оү	1.97	156.53	-26.12	-22.46	1.71	-20.75	0.27
	С2-Н2Оү	3.04	134.65					
(F)	С2-Н2Оа	2.07	163.66	-26.05	-22.73	1.83	-20.90	0.00
	С3-Н3Оа	2.99	139.21					
(G)	Оα-НαОа	1.68	166.07	-36.42	-31.62	1.66	-29.96	0.00
	C3-H3Ob	2.24	158.69					
(H)	$O\gamma$ - $H\gamma$ Ob	1.78	162.59	-32.13	-26.54	2.02	-24.53	5.43
	С4-Н4Оа	2.25	149.50					
(I)	C2-H2Ob	2.43	150.49	-31.51	-26.46	1.82	-24.64	5.32
	С4-Н4Оа	2.35	171.16					
	C4'-H4'Ob	2.02	161.26					
(J)	Ο-Η1Οα	1.99	165.67	-9.40	-7.79	1.34	-6.45	0.09
	ОН3-С3	2.56	140.49					
(K)	Ο-Η1Οβ	1.95	151.74	-9.60	-7.72	1.19	-6.54	0.00
	ОНү-Оү	2.06	145.47					
(L)	О-Н1Оү	2.00	154.62	-8.82	-6.63	0.87	-5.76	0.77
	OH2'-C2'	2.70	173.67					

Table S6 The corresponding H-Bonds lengths (in angstroms), bond angles (in degrees) and interaction energies of (A-C) GGE-POM, (D-F) GGE-C4C11m (G-I) GGE-OAc and (J-L) GGE-H₂O.

^a ΔE_1 , ΔE_2 , $\Delta BSSE$, ΔE_{2C} and ΔE_{2CR} represent the interaction energies using M06L/6-31g** (LANL2DZ basis sets on mental atoms), the interaction energies using M06L/def2-TZVP, the values of BSSE, the interaction energies (ΔE_2) corrected by BSSE and the relative interaction energies (ΔE_{2C}).

Type of bonds	GGE	GGE-POM1	GGE-POM2	GGE-POM-3
C1-C2	1.50842	1.50648	1.50175	1.51493
C2-Oa	1.41980	1.43615	1.43170	1.43599
C2-C3	1.52384	1.51941	1.53147	1.54276
C3-C4	1.52463	1.51689	1.52356	1.52232
C4-Ογ	1.40039	1.40430	1.40388	1.40164
С3-Оβ	1.43844	1.46091	1.45729	1.45019
Οβ-C5	1.36791	1.35463	1.37310	1.37352

Table S7 Changes in bond length (in angstroms) for GGE while it interacts with POM

Table S8 Energy decomposition of interaction energies (in kcal/mol) for GGE and POM, OAc, C4C1Im and H_2O^a .

Entry		$\Delta \mathbf{E}_{els}$	$\Delta \mathbf{E}_{\mathbf{exe}}$	$\Delta \mathbf{E}_{ind}$	$\Delta \mathbf{E}_{\mathrm{disp}}$	$\Delta \mathbf{E}_{\mathrm{tot}}$	
(A)	GGE-POM	-30.15	37.53	-11.78	-30.25	-34.65	
(B)	GGE-OAc	-42.54	39.39	-25.14	-9.79	-38.08	
(C)	GGE-C4C1Im	-25.46	24.11	-9.23	-15.56	-26.14	
(D)	GGE-H ₂ O	-18.11	17.59	-4.29	-4.54	-9.35	

^a $\Delta E_{tot} = \Delta E_{els} + \Delta E_{exe} + \Delta E_{ind} + \Delta E_{disp}$

Table S9 The corresponding H-Bonds lengths (in angstroms), bond angles (in degrees) andinteraction energies (in kcal/mol) of $GGE-[C4C1Im]_3[PW_{12}O_{40}]$ structures.

	<u> </u>	· · · · · · · · · · · · · · · · · · ·	-	3.6				
Entry	H-bonds	Length	Angle	ΔE_1^a	ΔE_2^a	∆ BSSE ^a	$\Delta \mathbf{E}_{2C}^{a}$	ΔE_{2CR}^{a}
(A)	C2-H2Ot1	2.40	160.08	-181.90	-191.69	7.85	-183.83	0.68
	C3-H3Ot2	2.44	162.02					
(B)	01-H1Ot1	3.31	100.49	-182.15	-191.21	7.32	-183.89	0.62
	C2-H2Ot2	2.32	117.64					
(C)	01-H1Ot1	2.92	79.20	-183.52	-191.53	7.01	-184.51	0.00
	C2-H2Ot2	2.78	174.77					
(D)	C2-H2Ot1	2.46	123.62	-379.80	-393.97	6.62	-387.35	0.06
	C3-H3Ot2	2.13	144.54					
	01-H1Ot3	2.75	85.71					
(E)	C3-H3Ot1	2.78	157.11	-381.04	-396.13	8.72	-387.41	0.00
	C2-H2Ot3	2.53	175.61					
	C4-H4Ot2	2.42	121.18					
(F)	C3-H3Ot2	2.52	163.38	-378.66	-393.66	6.92	-386.75	0.66
	C1-H1Ot1	2.51	95.82					

^a ΔE_1 , ΔE_2 , $\Delta BSSE$, ΔE_{2C} and ΔE_{2CR} represent the interaction energies using M06L/6-31g** (LANL2DZ basis sets on mental atoms), the interaction energies using M06L/def2-TZVP, the values of BSSE, the interaction energies (ΔE_2) corrected by BSSE and the relative interaction energies (ΔE_{2C}).

Туре	of	GGE	A	B	С	D	Е	F
bonds								
C1-C2		1.50842	1.50986	1.50826	1.51874	1.51128	1.51196	1.50896
C2-Oa		1.41980	1.42137	1.41688	1.41777	1.42028	1.41667	1.41813
C2-C3		1.52384	1.53115	1.53027	1.53078	1.52446	1.52599	1.52439
C3-C4		1.52463	1.52189	1.52164	1.53528	1.52004	1.52318	1.52503
С4-Оү		1.40039	1.39587	1.39947	1.39001	1.40042	1.39924	1.39969
С3-Оβ		1.43844	1.44887	1.43452	1.43861	1.44981	1.44067	1.43329
Οβ-C5		1.36791	1.37684	1.37278	1.37618	1.36647	1.36928	1.37323

Table S10 Changes in bond length (in angstroms) for GGE while more cations were introduced in the system corresponding to the structures of Fig. 5.

Table S11 The corresponding H-Bonds lengths (in angstroms), bond angles (in degrees) andinteraction energies (in kcal/mol) of GGE-[C4C11m][OAc] structures.

Entry	H-bonds	Length	Angle	ΔE_1^a	ΔE_2^a	∆ BSSE ^a	ΔE_{2C}^{a}	$\Delta \mathbf{E}_{2CR}^{a}$
(A)	Ογ-Ηγ…Οα	1.62	175.97	-132.96	-123.31	2.06	-121.25	7.44
	C2-H2Ob	1.87	138.14					
	С2-Н2Оү	2.46	124.46					
(B)	Оү-НүОа	1.81	163.95	-140.90	-130.16	2.91	-127.25	1.44
	С2-Н2Оа	1.81	175.24					
(C)	Оα-Нα…Оа	1.72	167.17	-141.06	-131.17	2.48	-128.70	0.00
	С2-Н2Оа	1.73	170.26					

^a ΔE_1 , ΔE_2 , $\Delta BSSE$, ΔE_{2C} and ΔE_{2CR} represent the interaction energies using M06L/6-31g** (LANL2DZ basis sets on mental atoms), the interaction energies using M06L/def2-TZVP, the values of BSSE, the interaction energies (ΔE_2) corrected by BSSE and the relative interaction energies (ΔE_{2C}).