A DFT and KMC Based Study on the Mechanism of Water Gas Shift Reaction on Pd(100) Surface

Arunabhiram Chutia^{1,2*}, Adam Thetford^{2,3,4}, Michail Stamatakis⁵, C. Richard A. Catlow^{2,4,6*}

¹School of Chemistry, Brayford Pool, University of Lincoln, Lincoln, LN6 7TS United Kingdom

²UK Catalysis Hub, RCaH, Rutherford Appleton Laboratory, Didcot, OX11 OFA, United Kingdom

³Department of Chemistry, University of Manchester, United Kingdom

⁴Department of Chemistry, University College London, Gordon Street, London, WC1H 0AJ, United Kingdom

⁵Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom ⁶Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom

Email: achutia@lincoln.ac.uk and c.r.a.catlow@ucl.ac.uk

-	or for different species) on the same surface				
	Adsorbed	Interaction energy			
	CO + O	0.196			
	CO + OH	0.107			
	OH + H	0.043			
	O + H	0.368			
	H2O + O	0.354			
	H + H	0.077			
	(CO+ CO)bb	0.128			
	(CO+ CO) b4	0.103			
-	(CO +CO) bt(bb)	0.067			

Table S1. the interaction energies using DFT on two adjacent molecules (both for the same or for different species) on the same surface.

$\Delta E_{reaction}$			
Stone		eV	
Steps -	Ef	Er	$\Delta E_{\text{reaction}}$
1	1.320	0.240	1.080
2	0.880	1.410	-0.530
3	0.320	0.350	-0.030
4	0.810	0.018	0.792
5	0.690	0.439	0.251
6	0.720	1.471	-0.751
7	0.540	0.850	-0.310

Table S2. The energy barriers for the forward and reverse reactions and the $\Delta E_{\text{reaction}}$