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1 Matrix entropy as a function of porosity.

The eqn (15) in the main text was proposed on the basis of experimental evidence.1,2 We first

note that, in general, the dependence of the porosity on the applied pressure can be modeled

by a relation of the form: P (φ) = P0φ
−γ, with P0 a reference pressure and γ an exponent.

Now, the eqn (15) can be derived from thermodynamic considerations by recasting that a

phase transition between states 1 and 2 is described by the Clapeyron equation, which is

given by
dP

dT
=

∆S12

V0∆φ
, (1)

where we used the fact that the volume may be written as proportional to the porosity

V = V0φ, with V0 a reference volume. Assuming that pressure depends on temperature

through the porosity: P (T ) = P [φ(T )] and using the chain rule, the last equation can be

written in the form
∆S12

∆φ
= V0

dP

dφ

dφ

dT
. (2)

Using the definition of the thermal expansion coefficient and the relation for φ, we have

α = (1/φ)dφ/dT . Assuming in addition that the dependence of the pressure on φ is γ ' 1,

then eq 2 can be written in the differential form dS21 = −dS12 = −αkBTdφ/φ, where

V0P0 ∼ kBT . Integration of this equation gives

∆S12 = −αkBT ln

∣∣∣∣ φφ0

∣∣∣∣ , (3)

where φ0 is a reference volume fraction. For instance, in the transition from monoclinic (mn)

to cubic (cub) phases φ0, corresponds to φmn. The eq 3 coincides with the referred eq 15.
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2 General formula for the effective conductivity

The most simple dependence of the local properties for the electrical current inside confined

ionic channels or pores of the material can be analyzed in analogy with the migration of

particles in presence of a concentration gradient.3,4 Following this analogy, the total number

of electrons crossing a membrane is proportional to its width W and to the gradient of the

electrochemical potential which can be approximated as ∆µ/L with L the total length of

the membrane. However, in the local scale, since the electrons only pass through the void

spaces, the number of electrons crossing per unit of time has to be the same when only the

void space is considered, and therefore, it has to be proportional to the average width of

the pore 〈ω(x)〉 and to the local gradient which can be written as ∆µx/Lx where Lx is the

average real length that the electrons have to travel inside the pore. In general, this distance

Lx is greater than the length of the membrane L accounting for the tortuosity factor of the

membrane. Therefore, charge conservation in the stationary state implies

σ̂νW
∆µ

L
= σν,0〈w〉

∆µx
Lx

. (4)

where σν,0 is the local conductivity, that is, the one being measured when the pores are very

wide and the effects of the geometry of the pore can be neglected. In contrast, σ̂ν is the

effective electrical conductivity of the membrane which takes into account the diminution of

the flux due to the presence of inaccessible space in the material.

Taking into account that the electrochemical potential is measured by unit of volume, it

can be proven that ∆µxLx = δL∆µ where δ measures the constriction factor of the porous

material and whose precise mathematical form at first order is5

δ =

〈
1

w(x)

〉
〈w(x)〉. (5)
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Substituting the last two equations in eqn (4), we find that the effective conductivity is

σ̂ν = σν,0
φ

τ
δ. (6)

The three geometrical parameters are the porosity φ = 〈w(x)〉/W which measures the

diminution of the available space, the tortuosity τ = (Lx/L)2 which measures the elon-

gation of the path effective distance that charged particles have to travel inside the pores

and finally, the constriction factor δ given before, which takes into account the geometrical

aspects of the corrugation of the pore and the effects of surface reactions in the pore.3–5

The formula deduced here analytically coincides with the macroscopic reduction of the flux

encountered in experiments.6,7
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