Supporting Information

Combining experiment and computation to elucidate the optical properties of Ce³⁺ in Ba₅Si₈O₂₁

Jiyou Zhong^a, Shruti Hariyani^b, Ya Zhuo^b, Weiren Zhao^{*a}, Xiang Liu^a, Jun Wen^{*c} and Jakoah Brgoch^{*b}

^aSchool of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China

^bDepartment of Chemistry, University of Houston, Houston, Texas 77204, United States

^cSchool of Physics and Electronic Engineering, Anqing Normal University, Anqing 246133, China

*E-mail: zwren123@126.com; wenjunkd@mail.ustc.edu.cn; jbrgoch@uh.edu

Figure S1 Density of states (DOS) of $Ba_5Si_8O_{21}$ and resulting band gap calculated with the a) PBE functional, b) HSE06 hybrid functional, and c) PBE0 hybrid functional.

Figure S2 Total and orbital-projected DOSs for a) $Ce_{Ba(1)} + Al_{Si}$, b) $Ce_{Ba(2)} + Al_{Si}$, c) $Ce_{Ba(3)} + Al_{Si}$ in the Ba₅Si₈O₂₁ obtained from the standard DFT-PBE0 method.