Supporting Information

Pressure-Stabilized Polymerization of Nitrogen in Alkaline-

Earth-Metal Strontium Nitrides

Shuli Wei, Lili Lian, Yan Liu, Da Li, Zhao Liu, and Tian Cui

Index

Table S1. Structural parameters of all considered structures for Sr-N. 1
Table S2. Calculated Bader charges for C2/m-SrN ₃ , C2/c-SrN ₄ , and P-1-SrN ₅ , respectively.
Table S3. Calculated integrated crystal orbital Hamiltonian populations of N-N pairs without
inclusion of spin polarization in C2/m-SrN ₃ , C2/c-SrN ₄ and P-1-SrN ₅ 3
Table S4 . Vickers hardness(H_v) of $P2_1/c$ -SrN, $P-62m$ -Sr ₂ N ₃ , $C2/c$ -Sr ₂ N ₃ , $P-1$ -SrN ₂ , $P2/m$ -SrN ₂ ,
$C2/m$ -SrN ₃ , $C2/c$ -SrN ₄ , $P2_1/c$ -SrN ₄ , P -1-SrN ₅ 6
Table S5. The enthalpy of $C2/m$ -SrN ₃ , $C2/c$ -SrN ₄ and P -1- SrN ₅ under different pressures,
considering SOC or not6
The enthalpy difference curves of the strontium nitrides under high pressures7
Phonon dispersion curves for the strontium nitrides9
Crystal orbital Hamilton population (COHP) curves14
Total density of states considering spin of the electron

Str. And S.G.	Lattice parameters (Å, °)	Atomic coordinates (fractional)	Sites		
<i>R</i> -3 <i>m</i> -Sr ₂ N	a = 3.862	N1 (0.0, 0.0, 0.5)	3 <i>a</i>		
$\mathbf{D} = 0 \mathbf{C} \mathbf{D}$	c = 20.858	Sr1 (0.0, 0.0, 0.0.767)	6 <i>c</i>		
P = 0 GPa	$\gamma = 120$				
	a = 7.601	N1 (0.281, 0.127, -0.725)	4 <i>a</i>		
	1 10 775	N2 (0.723, 0.064, -0.356)	4 <i>a</i>		
Cc-Sr ₂ N	b = 10.7/5	Sr1 (0.473, -0.056, -0.984)	4 <i>a</i>		
P = 20 GPa	c = 6.592	Sr2 (0.032, 0.005, -0.863)	4 <i>a</i>		
	β=54 94	Sr3 (0.718, -0.184, -0.485)	4 <i>a</i>		
	μ στ.στ	Sr4 (0.401, -0.248, -0.593)	4 <i>a</i>		
	a = 13.692	N1 (0.977, 0.0 0.906)	4 <i>i</i>		
C2/m-SrN	b = 3.797	N2 (0.754, 0.0, 0.251)	4 <i>i</i>		
P = 0 GPa	c = 6.761	Sr1 (0.646, 0.0 0.906)	4 <i>i</i>		
	β=94.839	Sr2 (0.847, 0.0, 0.611)	4 <i>i</i>		
<i>P</i> 2 ₁ / <i>c</i> -SrN	a = 4.605	N (0.868, 0.593, 0.568)	4 <i>e</i>		
D 20 CD	b = 4.576				
P = 20 GPa	$c = 6.806$ $\beta = 66.53$	Sr (0.246, 0.0.589, 0.751)	4 <i>e</i>		
<i>P</i> -62 <i>m</i> -Sr ₂ N ₃	a = 7.001	N (0.657, 0.889, 0.50)	6k		
D 20 CD	c = 3.111	Sr1 (0.558, 0.558, 0.0)	3 <i>f</i>		
P = 20 GPa	$\gamma = 120$	Sr2 (0.0, 0.0, 0.0)	1 <i>a</i>		
	a = 12.851	N1 (0.384, 0.254, 0.470)	8 <i>f</i>		
	b = 6.221	N2 (0.388, 0.269, 0.901)	8 <i>f</i>		
$C2/c-Sr_2N_3$	c = 5.642	c = 5.642 N3 (0.651, -0.181, 0.333)			
P = 50 GPa	β=104.679	Sr1 (0.767, -0.035, 0.121)	8 <i>f</i>		
		Sr2 (0.50, -0.032, 0.75)	4 <i>e</i>		
		Sr3 (0.50, -0.481, 0.75)	4 <i>e</i>		
I4/mmm-SrN ₂	a = 3.848	N1 (0.5, 0.5, 0.602)	4 <i>e</i>		
$\mathbf{P} = 0 \mathbf{G} \mathbf{P} \mathbf{a}$	c = 6.333	Sr1 (0.5, 0.5, 0.0)	2 <i>b</i>		
P-1-SrN ₂	a = 3.833 α=76.07	N1 (0.701, 0.665, 0.199)	2 <i>i</i>		
D 20 CD	$b = 3.408$ $\beta = 81.29$	N2 (0.337, 0.515, 0.565)	2 <i>i</i>		
P = 20 GPa	$c = 5.879$ $\gamma = 90.12$	Sr (0.803, 0.836, 0.776)	2 <i>i</i>		
P2/m-SrN ₂	a = 3.876	N1 (0.169, 0.0, 0.427)	2 <i>m</i>		
	b = 2.691	N2 (0.812, 0.0, 0.831)	2 <i>m</i>		
P = 100 GPa	$c = 5.152$ $\beta = 78.01$	Sr (0.321, 0.5, 0.779)	2 <i>n</i>		
C2/m-SrN ₃	a = 8.579	N1 (0.929, 0.219, 0.700)	8j		

Table S1. Structural parameters of all considered structures for Sr-N.

(1		1
	b = 5.277	N2 (0.579, 0.50, 0.054)	4 <i>i</i>
	c = 3.342	Sr (0.175, 0.5, 0.688)	4 <i>i</i>
	β=67.25		
	a = 5.306	N1 (0.643, 0.662, 0.934)	8 <i>f</i>
C2/c-SrN ₄	b = 5.350	N2 (0.323, 0.021, 0.435)	8 <i>f</i>
P = 20 GPa	c = 10.136	Sr (0.0, 0.411, 0.25)	4 <i>e</i>
	β=133.54		
	a = 4.660	N1 (0.542, 0.891, 0.509)	4 <i>e</i>
$P2_1/c$ -SrN ₄	b = 5.997	N2 (0.331, 0.515, 0.421)	4 <i>e</i>
	c = 7.246	N3 (0.296, 0.337, 0.777)	4 <i>e</i>
P = 60 GPa	β=123.36	N4 (0.784, 0.885, 0.258)	4 <i>e</i>
		Sr1 (0.137, 0.730, 0.621)	4 <i>e</i>
	a = 3.402	N1 (0.738, 0.648, 0.885)	2 <i>i</i>
	b = 5.455	N2 (0.073, 0.176, 0.066)	2 <i>i</i>
<i>P</i> -1-SrN ₅	c = 5.649	N3 (0.142, 0.889, 0.745)	2 <i>i</i>
P = 60 GPa	α=78.62	N4 (0.906, 0.259, 0.412)	2 <i>i</i>
	β=93.33	N5 (0.151, 0.415, 0.318)	2 <i>i</i>
	$\gamma = 77.90$	Sr1 (0.492, 0.245, 0.737)	2 <i>i</i>
<i>Fm-3m-</i> Sr	a = 6.032	Sr (0.0, 0.0, 0.0)	4 <i>a</i>
<i>P</i> 6 ₃ / <i>mmc</i> -Sr	a = 4.251, c = 7.056	Sr (0.667, 0.333, 0.75)	2 <i>c</i>
	$\gamma = 120$		

Table S2. Calculated Bader charges for C2/m-SrN₃, C2/c-SrN₄, and P-1-

SrN₅, respectively.

Str.	Atom	N	Charge value(e)	δ(e)
C2/m-SrN ₃	N1	8	5.58	0.58
	N2	4	5.22	0.22
	Sr	4	8.62	-1.38
C2/c-SrN ₄	N1	8	5.37	0.37
	N2	8	5.39	0.39
	Sr	4	8.49	-1.51
P-1-SrN ₅	N1	2	5.19	0.19
	N2	2	5.33	0.33
	N3	2	5.28	0.28

N4	2	5.33	0.33	
N5	2	5.35	0.35	
Sr	2	8.52	-1.48	

Table S3. Calculated integrated crystal orbital Hamiltonian populations of N–N pairs without inclusion of spin polarization in C2/m-SrN₃, C2/c-SrN₄ and *P*-1-SrN₅.

Str. And	Pressur	Atom	Atom	Distance	ICOHP(E _f)
S.G.	e			(Å)	
		N1	N1		-2.09
		N 2s	N 2s	1 42	0.06
		N 2s	N 2p	1.72	-0.78
C2/m-SrN ₃	60	N 2p	N 2p		-1.37
		N1	N2		-3.22
		N 2s	N 2s	1 40	0.46
		N 2s	N 2p	1.40	-1.29
		N 2p	N 2p		-2.39
		N2	N2		-3.13
		N 2s	N 2s	1 53	0.11
		N 2s	N 2p	1.55	-0.66
		N 2p	N 2p		-2.58
		N1	N1		-2.33
		N 2s	N 2s	1 37	0.40
		N 2s	N 2p	1.57	0.45
		N 2p	N 2p		-3.18
		N1	N2		0.60
$C^{2}/c_{-}SrN_{+}$	20	N 2s	N 2s	1 36	1.49
	20	N 2s	N 2p	1.50	0.21
		N 2p	N 2p		-1.10
		N2	N2		-3.79
		N 2s	N 2s	1 39	0.07
		N 2s	N 2p	1.50	-0.07
		N 2p	N 2p		-3.79
P-1-SrN5	60	N1	N2	1.33	-4.43

	N 2s	N 2s	1
	N 2p	N 2s	1
	N 2p	N 2p	1
	N3	N2	
1 36	N 2s	N 2s	1
1.50	N 2p	N 2s	1
	N 2p	N 2p	1
	N4	N3	
1 34	N 2s	N 2s	1
1.54	N 2p	N 2s	1
	N 2p	N 2p	1
	N5	N4	
1.37	N 2s	N 2s	1
1.07	N 2p	N 2s	1
	N 2p	N 2p	1
	N1	N5	
1.31	N 2s	N 2s	1
1.01	N 2p	N 2s	1
	N 2p	N 2p	1

Table S4. Vickers hardness(H_v) of $P2_1/c$ -SrN, P-62m-Sr₂N₃, C2/c-Sr₂N₃,

P-1-SrN₂, P2/m-SrN₂, C2/m-SrN₃, C2/c-SrN₄, $P2_1/c$ -SrN₄, P-1-SrN₅.

Str.	<i>P</i> 2 ₁ / <i>c</i> -SrN	$P-62m-Sr_2N_3$	C2/c-Sr ₂ N ₃	P-1-SrN ₂	P2/m-SrN ₂	C2/m-SrN ₃	C2/c-SrN ₄	<i>P</i> 2 ₁ / <i>c</i> -SrN ₄	<i>P</i> -1- SrN ₅
H _v (GPa)	8.7	14.5	17.9	15.9	21.8	29.1	25.7	28.4	32.5

Table S5. The enthalpy of C2/m-SrN₃, C2/c-SrN₄ and P-1- SrN₅

under different pressures, considering SOC or not.

Enthalpy(e V/f.u.)	P = 0 GPa	P =10 GPa	P =20 GPa	P =30 GPa	P =40 GPa	P =50 GPa	P =60 GPa	P =70 GPa	P =80 GPa	P =90 GPa	P =100 GPa
C2/m-SrN ₃	-26.66806	-23.74975	-21.03437	-18.48055	-16.04878	-13.71575	-11.46595	-9.39854	-7.31601	-5.28422	-3.29775
C2/m-SrN ₃ with SOC	-26.66807	-23.74975	-21.03437	-18.48054	-16.04878	-13.71575	-11.46595	-9.39857	-7.31599	-5.28422	-3.29775
C2/c-SrN ₄	-35.47447	-31.88885	-28.55612	-25.41302	-22.41567	-19.53634	-16.75607	-14.06085	-11.44007	-8.88541	-6.3901
C2/c-SrN ₄ with SOC	-35.49005	-31.88896	-28.55611	-25.41304	-22.41567	-19.53634	-16.75607	-14.06085	-11.44007	-8.88541	-6.3901
<i>P</i> -1- SrN ₅	-43.29589	-38.87962	-34.98612	-31.36552	-27.93648	-24.65795	-21.50308	-18.45313	-15.49428	-12.61554	-9.80825
<i>P</i> -1- SrN ₅ with SOC	-43.47356	-38.88499	-34.98768	-31.36648	-27.93703	-24.65828	-21.50341	-18.45357	-15.49479	-12.61613	-9.80873

The enthalpy difference curves of the strontium nitrides

under high pressures.

Fig. S1 Calculated enthalpies per formula unit (f.u.) of the high-pressure Sr_2N phases with respect to R-3m- Sr_2N structure.

Fig. S2 Calculated enthalpies per formula unit (f.u.) of the high-pressure SrN phases with respect to C2/m-SrN structure.

Fig. S3 Calculated enthalpies per formula unit (f.u.) of the high-pressure Sr_2N_3 phases with respect to *P*-62*m*-Sr₂N₃ structure.

Fig. S4 Calculated enthalpies per formula unit (f.u.) of the high-pressure SrN_2 phases with respect to ambient-pressure I4/mmm-SrN₂ structure.

Fig. S5 Calculated enthalpies per formula unit (f.u.) of the high-pressure SrN_4 phases with respect to C2/c- SrN_4 structure.

Phonon dispersion curves for the strontium nitrides

Fig. S6 Phonon dispersion curves for the $P2_1/c$ -SrN at P = 20 GPa

Fig. S7 Phonon dispersion curves for the P-62m-Sr₂N₃ at P = 20 GPa

Fig. S8 Phonon dispersion curves for the C2/c-Sr₂N₃ at P = 50 GPa

Fig. S9 Phonon dispersion curves for the I4/mmm-SrN₂ at P = 0 GPa.

Fig. S10 Phonon dispersion curves for the *P*-1-SrN₂ at P = 20 GPa.

Fig. S11 Phonon dispersion curves for the P2/m-SrN₂ at P = 100 GPa.

Fig. S12 Phonon dispersion curves for the C2/m-SrN₃ at P = 60 GPa.

Fig. S13 Phonon dispersion curves for the C2/c-SrN₄ at ambient pressure.

Fig. S15 Phonon dispersion curves for the *P*-1-SrN₅ at P = 0 GPa(a) and P = 60 GPa(b).

Fig. S16 Phonon dispersion curves for the Fm-3m-Sr at P = 0 GPa.

Fig. S17 Phonon dispersion curves for the $P6_3/mmc$ -Sr at P = 5 GPa.

Crystal orbital Hamilton population (COHP) curves

Fig. S18 Crystal orbital Hamilton population (COHP) analyses for C2/m-SrN₃ at P = 60 GPa(a), C2/c-SrN₄ at P = 20 GPa(b), and P-1-SrN₅ at P = 60 GPa(c). The horizontal line at zero is the Fermi level.

Total density of states considering spin of the electron

Fig. S19. Total density of states considering spin of the electron for C2/m-SrN₃ at P = 60GPa (a), C2/c-SrN₄ at P = 20 GPa (b), and *P*-1-SrN₅ at P = 60 GPa (c).