Evidence for the influence of polaron delocalization on the

electrical transport in LiNi_{0.4+x}Mn_{0.4-x}Co_{0.2}O₂

Tao Feng,^a Liping Li,^a Quan shi,^b Shengde Dong,^c Baoyun Li,^a Ke Li,^a and Guangshe Li^{a*}

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China

^b Thermochemistry Laboratory, Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China

^c Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, PR China

Figure S1. Rietveld refinement XRD pattern of the samples (a) $\text{LiNi}_{0.4}\text{Mn}_{0.4}\text{Co}_{0.2}\text{O}_2$, (b) $\text{LiNi}_{0.5}\text{Mn}_{0.3}\text{Co}_{0.2}\text{O}_2$, (c) $\text{LiNi}_{0.6}\text{Mn}_{0.2}\text{Co}_{0.2}\text{O}_2$, and (d) $\text{LiNi}_{0.7}\text{Mn}_{0.1}\text{Co}_{0.2}\text{O}_2$ based on the hexagonal lattice geometry of the space group *R-3m*.

Figure S2. Mn 2p X-ray photoelectron spectra of the obtained samples $\text{LiNi}_{0.4+x}\text{Mn}_{0.4-x}$ _xCo_{0.2}O₂ ($0 \le x \le 0.3$) with (a) x=0, (b) x=0.1, (c) x=0.2, and (d) x=0.3.

Figure S3. Co 2p X-ray photoelectron spectra of the obtained samples $\text{LiNi}_{0.4+x}\text{Mn}_{0.4-x}$ _xCo_{0.2}O₂ ($0 \le x \le 0.3$) with (a) x=0, (b) x=0.1, (c) x=0.2, and (d) x=0.3.

Figure S4. Cyclic voltammetry of $LiNi_{0.4+x}Mn_{0.4-x}Co_{0.2}O_2$ ($0 \le x \le 0.3$) samples with (a) x=0, (b) x=0.1, (c) x=0.2, and (d) x=0.3.

Figure S5. Raman spectrum, measured using a laser of 532 nm with the output power of 10 mW, showing the evolution of position of the highest peak for varying the content of Mn in LiNi_{0.4+x}Mn_{0.4-x}Co_{0.2}O₂ ($0 \le x \le 0.3$).

$LiNi_{0.4}Mn_{0.4}Co_{0.2}O_2$									
Atom	Х	у	Z	Occupancy	Uiso				
Li1	0.000000	0.000000	0.000000	0.9702	0.01206				
Ni1	0.000000	0.000000	0.000000	0.0298	0.01111				
Li2	0.000000	0.000000	0.500000	0.0298	0.02500				
Ni2	0.000000	0.000000	0.500000	0.3702	0.00973				
Co2	0.000000	0.000000	0.500000	0.2000	0.01092				
Mn2	0.000000	0.000000	0.500000	0.4000	0.00703				
01	0.000000	0.000000	0.243149	1.0000	0.02500				

Table S1. Refined crystallographic parameters for $LiNi_{0.4}Mn_{0.4}Co_{0.2}O_2$ withhexagonal structure.

$LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$										
Atom	Х	у	Z	Occupancy	Uiso					
Li1	0.000000	0.000000	0.000000	0.9647	0.01760					
Ni1	0.000000	0.000000	0.000000	0.0353	0.02540					
Li2	0.000000	0.000000	0.500000	0.0353	0.02500					
Ni2	0.000000	0.000000	0.500000	0.4647	0.00120					
Co2	0.000000	0.000000	0.500000	0.2000	0.02500					
Mn2	0.000000	0.000000	0.500000	0.3000	0.02500					
01	0.000000	0.000000	0.243002	1.0000	0.02500					

Table S2. Refined crystallographic parameters for $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ withhexagonal structure.

$LiNi_{0.6}Mn_{0.2}Co_{0.2}O_2$										
Atom	Х	у	Z	Occupancy	Uiso					
Li1	0.000000	0.000000	0.000000	0.9485	0.05682					
Ni1	0.000000	0.000000	0.000000	0.0515	0.04556					
Li2	0.000000	0.000000	0.500000	0.0515	0.02500					
Ni2	0.000000	0.000000	0.500000	0.5485	0.00110					
Co2	0.000000	0.000000	0.500000	0.2000	0.00266					
Mn2	0.000000	0.000000	0.500000	0.2000	0.02573					
01	0.000000	0.000000	0.244635	1.0000	0.02500					

Table S3. Refined crystallographic parameters for $LiNi_{0.6}Mn_{0.2}Co_{0.2}O_2$ withhexagonal structure.

$LiNi_{0.7}Mn_{0.1}Co_{0.2}O_2$									
Atom	Х	у	Z	Occupancy	Uiso				
Li1	0.000000	0.000000	0.000000	0.9292	0.11628				
Ni1	0.000000	0.000000	0.000000	0.0708	0.01473				
Li2	0.000000	0.000000	0.500000	0.0708	0.02500				
Ni2	0.000000	0.000000	0.500000	0.6292	0.00176				
Co2	0.000000	0.000000	0.500000	0.2000	0.02459				
Mn2	0.000000	0.000000	0.500000	0.1000	0.02367				
01	0.000000	0.000000	0.243271	1.0000	0.02500				

Table S4. Refined crystallographic parameters for $LiNi_{0.7}Mn_{0.1}Co_{0.2}O_2$ withhexagonal structure.

Sample	a (Å)	c (Å)	V (Å)	c/a	α/β (deg)	γ (deg)	R _p (%)	R _{wp} (%)	<i>x</i> ²
NCM442	2.87485(4)	14.2756(3)	102.177(3)	4.966	90	120	2.70	3.60	2.518
NCM532	2.87238(2)	14.2532(2)	101.842(2)	4.962	90	120	2.60	3.53	2.801
NCM622	2.86848(3)	14.2234(2)	101.354(2)	4.959	90	120	2.77	3.71	2.677
NCM712	2.86461(3)	14.1824(3)	100.788(3)	4.951	90	120	2.65	3.55	3.494

Table S5. Refined lattice parameters and error factors of $\text{LiNi}_{0.4+x}\text{Mn}_{0.4-x}\text{Co}_{0.2}\text{O}_2$ ($0 \le x \le 0.3$).

Sample	Ni ²⁺ (Theory)	Ni ³⁺ (Theory)	Ni ²⁺ (XPS)	Ni ³⁺ (theory)
NCM442	0.40 mol	0.00 mol	0.40 mol	0.00 mol
NCM532	0.30 mol	0.20 mol	0.29 mol	0.21 mol
NCM622	0.20 mol	0.40 mol	0.18 mol	0.42 mol
NCM712	0.10 mol	0.60 mol	0.11 mol	0.59 mol

Table S6. The theoretical and fitted contents of Ni²⁺ and Ni³⁺ in LiNi_{0.4+x}Mn_{0.4-} _xCo_{0.2}O₂ ($0 \le x \le 0.3$).

Table S7. Parameters of constant susceptibility χ_0 , Curie-Weiss temperature T_{θ} , Curie-Weiss constant *C*, effective magnetic moment μ_{exp} and μ_{theory} for LiNi_{0.4+x}Mn_{0.4-x}Co_{0.2}O₂ ($0 \le x \le 0.3$). The μ_{exp} is derived from the Curie-Weiss fit and the μ_{theory} is calculated with the spin-only effective magnetic moment of transition metal ions.

Sample	χ_0	С	T_{θ}	μ_{exp}	$\mu_{ ext{theory}}$
	(emu Oe ⁻¹ mol ⁻¹)	(K emu Oe ⁻¹ mol ⁻¹)	(K)	$(\mu_{ m B})$	$(\mu_{\rm B})$
NCM442	3.1x10 ⁻⁴	1.128	-58.2	3.00	3.03
NCM532	3.4x10 ⁻⁴	0.970	-85.6	2.78	2.74
NCM622	3.7x10 ⁻⁴	0.806	-36.9	2.54	2.41
NCM712	9.3x10 ⁻⁵	0.502	23.2	2.00	2.02

Table S8. Parameters of six deconvoluted bands $(A_g \text{ and } E_g)$ of the Raman spectra for

$LiNi_{0.4+x}Mn_{0.4-x}Co_{0.2}O_2$	$0 \le x \le 0.3$) compounds.
-------------------------------------	-------------------	--------------

		NMC442			NMC532			NMC622			NMC712	
	position	FWHM	Peak									
	(cm ⁻¹)	(cm ⁻¹)	area	(cm ⁻¹)	(cm ⁻¹)	area	(cm ⁻¹)	(cm ⁻¹)	area	(cm ⁻¹)	(cm ⁻¹)	area
E _g (Ni)	465.6	47.9	1.0x10 ⁴	460.7	51.9	1.4x10 ⁴	456.6	57.9	1.6x10 ⁴	450.6	60.1	1.7x10 ⁴
Eg(Co)	499.0	48.1	1.1×10^{4}	493.8	49.9	1.3x10 ⁴	489.9	58.1	$1.3x10^{4}$	483.8	61.8	$1.2x10^{4}$
Eg(Mn)	526.9	45.9	$1.3 x 10^4$	521.9	52.0	$1.3 x 10^4$	518.0	55.9	$1.2x10^{4}$	511.9	59.8	$1.0x10^{4}$
A _g (Ni)	572.4	46.0	$3.0x10^{4}$	566.5	50.0	3.4x10 ⁴	555.4	59.8	3.6x10 ⁴	548.4	65.8	4.9x10 ⁴
A _g (Co)	596.3	32.7	3.5x10 ⁴	591.5	41.9	3.3x10 ⁴	584.5	45.9	3.5x10 ⁴	579.4	60.3	3.1x10 ⁴
Ag(Mn)	628.9	45.9	3.4x10 ⁴	624.9	50.1	3.0x10 ⁴	621.0	55.9	28x10 ⁴	614.9	60.1	1.2x10 ⁴