Characterization of β-turns by electronic circular dichroism spectroscopy: A coupled molecular dynamics and time-dependent density functional theory computational study

Mattia MIGLIORE, Andrea BONVICINI, Vincent TOGNETTI, Laure GUILHAUDIS, Marc BAADEN, Hassan OULYADI, Laurent JOUBERT, Isabelle SEGALAS-MILAZZO

Supplementary information file

Contents

Figure S1 . Dihedral angles distributions for Ace-A-A-NHMe: type I β -turn	S3
Figure S2 . Dihedral angles distributions for Ace-A-A-NHMe: type I' β-turn	. S4
Figure S3 . Dihedral angles distributions for Ace-A-A-NHMe: type II β-turn	. S5
Figure S4 . Dihedral angles distributions for Ace-A-A-NHMe: type II' β-turn	S6
Figure S5 . Dihedral angles distributions for type I Ace-K-A-NHMe with only one Cl ⁻ and in a 150 mM NaCl solution	. S7
Figure S6. Averaged absorption spectra for Ace-A-A-NHMe for the four β -turns types	s S8
Figure S7 . κ distributions for the four considered β -turn types	. S9
Figure S8 . $\Delta\lambda$ distributions for the four considered β -turn types	. S10
Figure S9. Comparison between averaged ECD spectra computed from MD simulation	ns
using different force fields (OPLS-AA and CHARMM27)	. S11
Figure S10. Averaged ECD spectra for β -turn type I computed with and without the	
PE-EEF extension	S12

Figure S1. Dihedral angles (in °) distributions (in ‰) for Ace-A-A-NHMe in type I β -turn conformation.

Figure S2. Dihedral angles (in °) distributions (in ‰) for Ace-A-A-NHMe in type I' β -turn conformation.

Figure S3. Dihedral angles (in °) distributions (in ‰) for Ace-A-A-NHMe in type II β -turn conformation.

Figure S4. Dihedral angles (in °) distributions (in ‰) for Ace-A-A-NHMe in type II' β -turn conformation.

Figure S5. Dihedral angles (in °) distributions (in ‰) for Ace-K-A-NHMe in type I β -turn conformation with only one Cl⁻ as counteranion (in black) and in a 150 mM NaCl solution (in red).

Figure S6. Averaged absorption spectra for Ace-A-A-NHMe for the four β -turns types considered here.

Figure S7. Distributions (in %) for the intensity ratio between the negative and positive ECD bands, κ (see eq. 5 in the paper) for the four considered β -turn types.

Figure S8. Distributions (in %) for the wavelength difference between the negative and positive ECD bands, $\Delta\lambda$ (in nm, see eq. 4 in the paper) for the four considered β -turn types.

Figure S9. Comparison of averaged ECD spectra for the minimal model Ace-A-A-NHMe for the β -I turn conformation obtained from a restrained MD simulation (with allowed deviations of ±10° around the canonical Φ_{i+1} , Ψ_{i+1} , Φ_{i+2} and Ψ_{i+2} dihedral angles) using either the OPLS-AA or the CHARMM27 force fields.

Figure S10. Averaged ECD spectra for β -turn type I computed with (using the RESPONSE module) and without (using the PROPERTIES module) the PE-EEF extension.

