Characterization of $\boldsymbol{\beta}$-turns by electronic circular dichroism spectroscopy:

A coupled molecular dynamics and time-dependent density functional theory computational study

Mattia MIGLIORE, Andrea BONVICINI, Vincent TOGNETTI, Laure GUILHAUDIS, Marc BAADEN, Hassan OULYADI, Laurent JOUBERT, Isabelle SEGALAS-MILAZZO

Supplementary information file

Contents

Figure S1. Dihedral angles distributions for Ace-A-A-NHMe: type I β-turn S3
Figure S2. Dihedral angles distributions for Ace-A-A-NHMe: type I' β-turn S4
Figure S3. Dihedral angles distributions for Ace-A-A-NHMe: type II β-turn S5
Figure S4. Dihedral angles distributions for Ace-A-A-NHMe: type II' β-turn S6
Figure S5. Dihedral angles distributions for type I Ace-K-A-NHMe with only one Cl^{-} and in a 150 mM NaCl solution. S7
Figure S6. Averaged absorption spectra for Ace-A-A-NHMe for the four β-turns types.. S8
Figure S7. κ distributions for the four considered β-turn types S9
Figure S8. $\Delta \lambda$ distributions for the four considered β-turn types. S10
Figure S9. Comparison between averaged ECD spectra computed from MD simulationsusing different force fields (OPLS-AA and CHARMM27)S11
Figure S10. Averaged ECD spectra for β-turn type I computed with and without the
PE-EEF extension S12

Figure S1. Dihedral angles (in ${ }^{\circ}$) distributions (in \%) for Ace-A-A-NHMe in type I β-turn conformation.

Figure S2. Dihedral angles (in ${ }^{\circ}$) distributions (in \%o) for Ace-A-A-NHMe in type I' β-turn conformation.

Figure S3. Dihedral angles (in ${ }^{\circ}$) distributions (in \%o) for Ace-A-A-NHMe in type II β-turn conformation.

Figure S4. Dihedral angles (in ${ }^{\circ}$) distributions (in \%) for Ace-A-A-NHMe in type II' β-turn conformation.

Figure S5. Dihedral angles (in ${ }^{\circ}$) distributions (in \%o) for Ace-K-A-NHMe in type I β-turn conformation with only one Cl^{-}as counteranion (in black) and in a 150 mM NaCl solution (in red).

Figure S6. Averaged absorption spectra for Ace-A-A-NHMe for the four β-turns types considered here.

Figure S7. Distributions (in \%) for the intensity ratio between the negative and positive ECD bands, κ (see eq. 5 in the paper) for the four considered β-turn types.

Figure S8. Distributions (in \%) for the wavelength difference between the negative and positive ECD bands, $\Delta \lambda$ (in nm, see eq. 4 in the paper) for the four considered β-turn types.

Figure S9. Comparison of averaged ECD spectra for the minimal model Ace-A-A-NHMe for the β-I turn conformation obtained from a restrained MD simulation (with allowed deviations of $\pm 10^{\circ}$ around the canonical $\Phi_{i+l}, \Psi_{i+1}, \Phi_{i+2}$ and Ψ_{i+2} dihedral angles) using either the OPLS-AA or the CHARMM27 force fields.

Figure S10. Averaged ECD spectra for β-turn type I computed with (using the RESPONSE module) and without (using the PROPERTIES module) the PE-EEF extension.

