Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Supporting information Energetics of paramagnetic oxide clusters: the Fe(III) oxyhydroxy Keggin ion.

C. André Ohlin 1

 $^{1}\mathrm{Department}$ of Chemistry, Ume
å University, Sweden

Department of Chemistry, Umeå University, Sweden

Contents

List of Tables

S1	Energies of different Keggin isomers calculated at different levels of theory. All isomers have	
	a spin angular momentum of 32.5 . Implicit solvation was included through the use of the	۲
CO		0 7
52 02	Coupling matrix for the α -isomer	(
S3	Coupling matrix for the β -isomer	8
S4	Coupling matrix for the γ -isomer	8
S5	Coupling matrix for the δ -isomer	11
S6	Coupling matrix for the ϵ -isomer	11
S7	Investigated spin configurations for the α -isomer. The integers given in each row for J_i are	
	prefactors n_i used to construct a linear equation according to equation S1	12
$\mathbf{S8}$	Energies of different spin configurations for the α -isomer for the B3LYP, PBE0, and M06 ex-	
	change and correlation functionals. All geometries were optimised with the indicated method	
	for that particular spin state, and with implicit solvation through the polarizable continuum	
	model (PCM), except where indicated otherwise.	14
S9	Energies of different spin configurations for the α -isomer for the PBE, and BP86 exchange	
	and correlation functionals. All geometries were optimised with the indicated method for that	
	particular spin state, and with implicit solvation through the polarizable continuum model	
	(PCM)	15
S10	Energies, including enthalpy and entropy correction terms, of different spin configurations	
	for the α -isomer for the B3LYP exchange and correlation functional. All geometries were	
	optimised with the indicated method for that particular spin state, and with implicit solvation	
	through the polarizable continuum model (PCM).	15
S11	Additional investigated spin configurations for the α -isomer at the B3LYP/def2-svp+tzvp	
	level of theory. The integers given in each row for J_i are prefactors n_i used to construct a	
	linear equation according to equation S1. Entries marked with * were used together with	
	the BS set for fitting (dataset X). The others were used to test the predictive ability of the	
	method, using the parameters from dataset X (see table S12). ΔE is relative to S _{max} ,	16
S12	Fitted coupling constants in cm^{-1} for the α -isomer as a function of basis set and exchange	
	correlation functional	17
S13	Investigated spin configurations for the β -isomer. The integers given in each row for L are	
	prefactors n_i used to construct a linear equation according to equation S1.	17
S14	Energies including enthalpy and entropy correction terms of different spin configurations	
	for the <i>B</i> -isomer for the B3LVP exchange and correlation functional. All geometries were	
	optimised with the indicated method for that particular spin state, and with implicit solvation	
	through the polarizable continuum model (PCM). Entries marked with * were used for fitting	
	together with those in table S15 \wedge E is relative to S at B3LVP/def2-tzyn+syn	18
S15	Additional investigated spin configurations for the β -isomer at the B3LVP/def2-syn \pm tzyn	10
510	level of theory. The integers given in each row for L are prefectors not used to construct a	
	linear equation according to equation S1. Entries marked with $*$ were used for fitting and	
	make up detected X together with these in table S14. The other entries were used to test the	
	make up dataset X, together with those in table 514. The other entries were used to test the	
	predictive ability of the method using parameters fitted using dataset Λ . Δ E is relative to \mathbf{c}	10
S16	Investigated spin configurations for the γ -isomer. The integers given in each row for J_i are	19
	prefactors n_i used to construct a linear equation according to equation S1	20

S17	Energies, including enthalpy and entropy correction terms, of different spin configurations
	for the γ -isomer for the B3LYP exchange and correlation functional. All geometries were
	optimised with the indicated method for that particular spin state, and with implicit solvation
	through the polarizable continuum model (PCM). Entries marked with * were used for fitting,
	together with those in table S18. Δ E is relative to S _{max} at B3LYP/def2-tzvp+svp

20

- S20 Energies, including enthalpy and entropy correction terms, of different spin configurations for the δ -isomer for the B3LYP exchange and correlation functional. All geometries were optimised with the indicated method for that particular spin state, and with implicit solvation through the polarizable continuum model (PCM). Entries marked with * were used for fitting, together with those in table S21. Δ E is relative to S_{max} at B3LYP/def2-tzvp+svp. 22
- S21 Additional investigated spin configurations for the δ -isomer at the B3LYP/def2-svp+tzvp level of theory. The integers given in each row for J_i are prefactors n_i used to construct a linear equation according to equation S1. Entries marked with * were used for fitting, and make up dataset X, together with those in table S20. The other entries were used to test the predictive ability of the method using parameters fitted using dataset X. Δ E is relative to S_{max} 23

- S24 Additional investigated spin configurations for the ϵ -isomer at the B3LYP/def2-svp+tzvp level of theory. The integers given in each row for J_i are prefactors n_i used to construct a linear equation according to equation S1. Entries marked with * were used for fitting, and make up dataset X, together with those in table S23. The other entries were used to test the predictive ability of the method using parameters fitted using dataset X. ΔE is relative to S_{max} 25

List of Figures

S1	Baker-Figgis isomers of the Keggin ion. The shaded triad indicates one which has been rotated relative to the α isomer. From top left to bottom right: α , β , γ , δ and ϵ	5
S2	Schematic view of the coupling paths in the α -isomer. Iron centres are indicated as numbers.	
	Intratriad J_{1a} couplings are shown as black lines, and intertriad J_{1b} couplings are shown as	
	red lines. Fe centres 1-12 all couple to centre 13 via J_2	6
S3	Schematic view of the coupling paths in the β -isomer. Intratriad J_{1a} couplings are shown as	
	black lines, and intertriad J_{1b} couplings are shown as red lines. Fe centres 1-12 all couple to	
	centre 13 via J_2	7
S4	Schematic view of the coupling paths in the γ -isomer. Intratriad J_{1a} couplings are shown as	
	black lines, intertriad J_{1b} couplings are shown as red lines, and intertriad J_{1d} couplings are	
	shown as blue lines. Fe centres 1-12 all couple to centre 13 via J_2	9

S5	Schematic view of the coupling paths in the δ -isomer. Intratriad J _{1a} couplings are shown as black lines, intertriad J _{1a} couplings are shown as red lines, and intertriad J _{1a} couplings are	
	shown as blue lines. Fe centres 1-12 all couple to centre 13 via J_2 .	10
S6	Schematic view of the coupling paths in the ϵ -isomer. Intratriad J _{1a} couplings are shown as	10
	black lines, and intertriad J_{1d} couplings are shown as blue lines. Fe centres 1-12 all couple to	
	centre 13 via J_2 .	12
S7	Distances for spin couplings in the S_{max} spin state of different Keggin isomers. Geometries	
	optimised at B3LYP/def2-tzvp+svp. Only the BS data sets were used	26
S8	Energies of the different isomers in their highest spin state relative to the ϵ isomer in the	
	highest spin state for geometries optimised using different exchange correlation functionals	
	with the def2-tzvp+svp basis set combination. PCM was used for PBE0, B3LYP and PBE.	
	SMD was used for M06. Only the BS data set was used	27
$\mathbf{S9}$	Energies of the different broken symmetry states of the α -isomer relative to the highest spin	
	state for different combinations of basis sets and exchange correlation functionals. Only the	
	BS data set was used. Note that the vertical axis shows $-\Delta E$.	28
S10	Fitted antiferromagnetic coupling constants for the α isomer for different combinations of	
	basis sets and exchange correlation functionals. Note that the vertical axis shows -J. Only the	
	BS data set was used.	29
S11	Predicted energies of the different broken symmetry states of the α -isomer relative to the	
	highest spin state for different combinations of basis sets and exchange correlation functionals.	
	Uncertainties propagated according to equation $S2$. Only the BS data set was used. \ldots	30
S12	Predicted energies at B3LYP/def2-tzvp+svp of the different broken symmetry states of the β - ϵ	
	isomers, relative to the highest spin state of each isomer. Uncertainties propagated according	
	to equation S2. The extended data set was used \ldots	31
S13	Computed energies of the S_{max} (black) and lowest energy (blue) spin configuration for each	
	isomer at PBE0, B3LYP and M06 with the def2-tzvp+svp basis set. Implicit solvation was	
	used (PCM for PBE0 and B3LYP; SMD for M06).	32
S14	The lowest spin configurations for each Baker-Figgis isomer of the Keggin ion. Blue and green	
	indicate positive and negative spin, respectively. An isodensity value of 0.04 was used to	
	render the figures. Top: α (left), β (right). Middle: γ (left), δ (right). Bottom: ϵ .	33

Listings

S1	Source code for the J_generator.py software	35
S2	Source code for spinmatrices.py software	38

Figure S1: Baker-Figgis isomers of the Keggin ion. The shaded triad indicates one which has been rotated relative to the α isomer. From top left to bottom right: α , β , γ , δ and ϵ .

Table S1: Energies of different Keggin isomers calculated at different levels of theory. All isomers have a spin angular momentum of 32.5. Implicit solvation was included through the use of the polarizable continuum model (PCM).

Isomer	PBE0	B3LYP	$\mathbf{M06}^{a}$	PBE
α	-19458.5955057	-19465.0044729	-19463.3972482	-19458.3979841
eta	-19458.5996921	-19465.0060446	-19463.3990737	-19458.4041281
γ	-19458.6004864	-19465.0069746	-19463.4017116	-19458.4073961
δ	-19458.6002837	-19465.0070946	-19463.4037190	-19458.4091273
ϵ	-19458.5861402	-19464.9963446	-19463.3952253	-19458.395399

def2-tzvp was used for all Fe atoms; def2-svp was used for all other atoms. ^{*a*} the 'Solvation Model based on Density' (SMD) was used instead of PCM. See main text for literature references to the PCM and SMD models.

Figure S2: Schematic view of the coupling paths in the α -isomer. Iron centres are indicated as numbers. Intratriad J_{1a} couplings are shown as black lines, and intertriad J_{1b} couplings are shown as red lines. Fe centres 1-12 all couple to centre 13 via J_2 .

Table S2: Coupling matrix for the α -isomer

					Fe	e centi	e					
1	2	3	4	5	6	7	8	9	10	11	12	13
0	J_{1a}	J_{1a}	0	0	J_{1b}	J_{1b}	0	0	0	0	0	J_2
J_{1a}	0	J_{1a}	0	0	0	0	0	J_{1b}	J_{1b}	0	0	J_2
J_{1a}	J_{1a}	0	J_{1b}	0	0	0	0	0	0	0	J_{1b}	J_2
0	0	J_{1b}	0	J_{1a}	J_{1a}	0	0	0	0	0	J_{1b}	J_2
0	0	0	J_{1a}	0	J_{1a}	0	J_{1b}	0	0	J_{1b}	0	J_2
J_{1b}	0	0	J_{1a}	J_{1a}	0	J_{1b}	0	0	0	0	0	J_2
J_{1b}	0	0	0	0	J_{1b}	0	J_{1a}	J_{1a}	0	0	0	J_2
0	0	0	0	J_{1b}	0	J_{1a}	0	J_{1a}	0	J_{1b}	0	J_2
0	J_{1b}	0	0	0	0	J_{1a}	J_{1a}	0	J_{1b}	0	0	J_2
0	J_{1b}	0	0	0	0	0	0	J_{1b}	0	J_{1a}	J_{1a}	J_2
0	0	0	0	J_{1b}	0	0	J_{1b}	0	J_{1a}	0	J_{1a}	J_2
0	0	J_{1b}	J_{1b}	0	0	0	0	0	J_{1a}	J_{1a}	0	J_2
J_2	0											

Figure S3: Schematic view of the coupling paths in the β -isomer. Intratriad J_{1a} couplings are shown as black lines, and intertriad J_{1b} couplings are shown as red lines. Fe centres 1-12 all couple to centre 13 via J_2 .

	Fe centre											
1	2	3	4	5	6	7	8	9	10	11	12	13
0	J_{1a}	J_{1a}	J_{1b}	0	J_{1b}	0	0	0	0	0	0	J_2
J_{1a}	0	J_{1a}	0	0	0	J_{1b}	0	J_{1b}	0	0	0	J_2
J_{1a}	J_{1a}	0	0	0	0	0	0	0	0	J_{1b}	J_{1b}	J_2
J_{1b}	0	0	0	J_{1a}	J_{1a}	0	0	0	0	0	J_{1b}	J_2
0	0	0	J_{1a}	0	J_{1a}	0	J_{1b}	0	0	J_{1b}	0	J_2
J_{1b}	0	0	J_{1a}	J_{1a}	0	J_{1b}	0	0	0	0	0	J_2
0	J_{1b}	0	0	0	J_{1b}	0	J_{1a}	J_{1a}	0	0	0	J_2
0	0	0	0	J_{1b}	0	J_{1a}	0	J_{1a}	0	J_{1b}	0	J_2
0	J_{1b}	0	0	0	0	J_{1a}	J_{1a}	0	0	J_{1b}	0	J_2
0	0	0	0	0	0	0	0	0	0	J_{1a}	J_{1a}	J_2
0	0	J_{1b}	0	J_{1b}	0	0	J_{1b}	J_{1b}	J_{1a}	0	J_{1a}	J_2
0	0	J_{1b}	J_{1b}	0	0	0	0	0	J_{1a}	J_{1a}	0	J_2
J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	0

Table S3: Coupling matrix for the $\beta\text{-isomer}$

Table S4: Coupling matrix for the $\gamma\text{-isomer}$

					Fe	e centi	e					
1	2	3	4	5	6	7	8	9	10	11	12	13
0	J_{1a}	J_{1a}	0	0	J_{1d}	0	0	0	0	0	0	J_2
J_{1a}	0	J_{1a}	0	0	0	J_{1b}	0	J_{1b}	0	0	0	J_2
J_{1a}	J_{1a}	0	0	0	0	0	0	0	0	J_{1b}	J_{1b}	J_2
0	0	0	0	J_{1a}	J_{1a}	0	0	0	J_{1b}	0	J_{1b}	J_2
0	0	0	J_{1a}	0	J_{1a}	J_{1b}	J_{1b}	0	0	0	0	J_2
J_{1d}	0	0	J_{1a}	J_{1a}	0	0	0	0	0	0	0	J_2
0	J_{1b}	0	0	J_{1b}	0	0	J_{1a}	J_{1a}	0	0	0	J_2
0	0	0	0	J_{1b}	0	J_{1a}	0	J_{1a}	J_{1b}	0	0	J_2
0	J_{1b}	0	0	0	0	J_{1a}	J_{1a}	0	0	J_{1b}	0	J_2
0	0	0	J_{1b}	0	0	0	J_{1b}	0	0	J_{1a}	J_{1a}	J_2
0	0	J_{1b}	0	0	0	0	0	J_{1b}	J_{1a}	0	J_{1a}	J_2
0	0	J_{1b}	J_{1b}	0	0	0	0	0	J_{1a}	J_{1a}	0	J_2
J_2	0											

Figure S4: Schematic view of the coupling paths in the γ -isomer. Intratriad J_{1a} couplings are shown as black lines, intertriad J_{1b} couplings are shown as red lines, and intertriad J_{1d} couplings are shown as blue lines. Fe centres 1-12 all couple to centre 13 via J_2 .

Figure S5: Schematic view of the coupling paths in the δ -isomer. Intratriad J_{1a} couplings are shown as black lines, intertriad J_{1b} couplings are shown as red lines, and intertriad J_{1d} couplings are shown as blue lines. Fe centres 1-12 all couple to centre 13 via J_2 .

Fe centre												
1	2	3	4	5	6	7	8	9	10	11	12	13
0	J_{1a}	J_{1a}	0	0	J_{1d}	0	0	0	0	0	0	J_2
J_{1a}	0	J_{1a}	0	0	0	J_{1d}	0	0	0	0	0	J_2
J_{1a}	J_{1a}	0	0	0	0	0	0	0	0	J_{1b}	J_{1b}	J_2
0	0	0	0	J_{1a}	J_{1a}	0	0	0	J_{1b}	0	J_{1b}	J_2
0	0	0	J_{1a}	0	J_{1a}	0	J_{1d}	0	0	0	0	J_2
J_{1d}	0	0	J_{1a}	J_{1a}	0	0	0	0	0	0	0	J_2
0	J_{1d}	0	0	0	0	0	J_{1a}	J_{1a}	0	0	0	J_2
0	0	0	0	J_{1d}	0	J_{1a}	0	J_{1a}	0	0	0	J_2
0	0	0	0	0	0	J_{1a}	J_{1a}	0	J_{1b}	J_{1b}	0	J_2
0	0	0	J_{1b}	0	0	0	0	J_{1b}	0	J_{1a}	J_{1a}	J_2
0	0	J_{1b}	0	0	0	0	0	J_{1b}	J_{1a}	0	J_{1a}	J_2
0	0	J_{1b}	J_{1b}	0	0	0	0	0	J_{1a}	J_{1a}	0	J_2
J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	0

Table S5: Coupling matrix for the $\delta\text{-isomer}$

Table S6: Coupling matrix for the $\epsilon\text{-isomer}$

					Fe	e centi	e					
1	2	3	4	5	6	7	8	9	10	11	12	13
0	J_{1a}	J_{1a}	0	0	J_{1d}	0	0	0	0	0	0	J_2
J_{1a}	0	J_{1a}	0	0	0	J_{1d}	0	0	0	0	0	J_2
J_{1a}	J_{1a}	0	0	0	0	0	0	0	0	0	J_{1d}	J_2
0	0	0	0	J_{1a}	J_{1a}	0	0	0	J_{1d}	0	0	J_2
0	0	0	J_{1a}	0	J_{1a}	0	J_{1d}	0	0	0	0	J_2
J_{1d}	0	0	J_{1a}	J_{1a}	0	0	0	0	0	0	0	J_2
0	J_{1d}	0	0	0	0	0	J_{1a}	J_{1a}	0	0	0	J_2
0	0	0	0	J_{1d}	0	J_{1a}	0	J_{1a}	0	0	0	J_2
0	0	0	0	0	0	J_{1a}	J_{1a}	0	0	J_{1d}	0	J_2
0	0	0	J_{1d}	0	0	0	0	0	0	J_{1a}	J_{1a}	J_2
0	0	0	0	0	0	0	0	J_{1d}	J_{1a}	0	J_{1a}	J_2
0	0	\mathbf{J}_{1d}	0	0	0	0	0	0	J_{1a}	J_{1a}	0	J_2
J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	J_2	0

Figure S6: Schematic view of the coupling paths in the ϵ -isomer. Intratriad J_{1a} couplings are shown as black lines, and intertriad J_{1d} couplings are shown as blue lines. Fe centres 1-12 all couple to centre 13 via J_2 .

Table S7: Investigated spin configurations for the α -isomer. The integers given in each row for J_i are prefactors n_i used to construct a linear equation according to equation S1.

Species	Flipped spins ^{a}	\mathbf{S}^{b}	J_2	J_{1a}	J_{1b}
S_{max}	_	32.5	_	_	_
BS1	1	27.5	15	30	30
BS2	13	27.5	180	0	0
BS4	1,2,3	17.5	45	0	0
BS5	$1,\!4,\!9,\!12$	12.5	60	120	90
BS6	$1,\!4,\!9,\!12,\!13$	2.5	120	120	90
BS7	$1,\!4,\!6,\!7,\!9,\!12$	2.5	90	120	60
BS8	$1,\!4,\!6$	17.5	45	60	60
BS9	$1,\!4,\!5,\!6,\!8,\!11$	2.5	90	90	60
BS10	$1,\!4,\!9,\!11,\!13$	2.5	120	120	120

 $\overline{}^{a}$ Fe(III) centres for which the spins have been set to -5/2. All other Fe(III) centres have spins of 5/2.^b S is the total spin angular momentum.

$$\Delta E = \sum n_i \cdot J_i \tag{S1}$$

The predicted energy difference between the highest spin configuration and a broken spin symmetry can be described as a linear equation, where the prefactors can be obtained from equation 1 in the main text. Prefactors for the broken symmetry configurations used in this study are given in tables S7

Table S8: Energies of different spin configurations for the α -isomer for the B3LYP, PBE0, and M06 exchange and correlation functionals. All geometries were optimised with the indicated method for that particular spin state, and with implicit solvation through the polarizable continuum model (PCM), except where indicated otherwise.

Spin isomer	ϵ (Ha)								
	B3LYP			PBE0			M06		
	def2-svp	$def2$ -tzvp+ svp^a	def2-tzvp	def2-svp	$def2$ -tzvp+ svp^a	def2-tzvp	$def2$ -tzvp+ $svp^{a,b}$	$def2$ - $tzvp^{b}$	
S_{max}	-19462.6809265	-19465.0044729	-19468.5292324	-19456.2970693	-19458.5955057	-19462.0704952	-19463.3972482	-19466.7370044	
BS1	-19462.6893938	-19465.0121735	-19468.5383579	-19456.3044294	-19458.6027443	-19462.0781605	-19463.4016689	-19466.7409931	
BS4	-19462.7014248	-19465.0247350	-19468.5504853	-19456.3148111	-19458.6133325	-19462.0890291	-19463.4138835	-19466.7536278	
BS5	-19462.7072609	-19465.0301836	-19468.5553959	-19456.3138577	-19458.6157826	-19462.0928525	-19463.4159394	-19466.7561296	
BS6	-19462.7176272	-19465.0389620	-19468.5665606	-19456.3275136	-19458.6246327	-19462.1015866	-19463.4248798	-19466.7657280	
BS7	-19462.7087254	-19465.0305170	-19468.5575987	-19456.3194237	-19458.6171548	-19462.0940216	-19463.4169950	-19466.7576750	
BS8	-19462.6992958	-19465.0221957	-19468.5490593	-19456.3116954	-19458.6109679	-19462.0868693	-19463.4096162	-19466.7493182	
BS9	-19462.7079624	-19465.0294930	-19468.5563920	-19456.3192017	-19458.6164300	-19462.1015866	-19463.4175974	-19466.7579748	
BS10	-19462.7212893	-19465.0429030	-19468.5703632	-19456.3306695	-19458.6280491	-19462.1055003	-19463.4280362	-19466.7689016	

 a^{a} def2-tzvp was used for all Fe atoms; def2-svp was used for all other atoms. b^{b} the 'Solvation Model based on Density' (SMD) was used instead of PCM. See main text for literature references to the PCM and SMD models.

Table S9: Energies of different spin configurations for the α -isomer for the PBE, and BP86 exchange and correlation functionals. All geometries were optimised with the indicated method for that particular spin state, and with implicit solvation through the polarizable continuum model (PCM).

Spin isomer	ϵ (I	ϵ (Ha)				
	PBE	BP86				
	def2-svp	def2-svp				
S_{max}	-19456.0635212	-19464.7295487				
BS1	-19456.0865879	-19464.7540167				
BS4	-19456.1149618	-19464.7857977				
BS5	-19456.1419826	-19464.8184643				
BS6	-19456.1685447	-19464.8481586				
BS7	-19456.1510087	-19464.832556				
BS8	-19456.1180298	-19464.8031144				
BS9	-19456.1464679	-19464.8255093				
BS10	-19456.1741531	-19464.8491219				

$$\sigma_{BS}^2 = \sum_{i}^{n} a_i^2 \cdot \sigma_{J_i}^2 \tag{S2}$$

Formula for propagation of uncertainties for a system where all parameters J_i are assumed to be uncorrelated, and where a_i is the pre-factor for J_i for a particular spin state BS.

Table S10: Energies, including enthalpy and entropy correction terms, of different spin configurations for the α -isomer for the B3LYP exchange and correlation functional. All geometries were optimised with the indicated method for that particular spin state, and with implicit solvation through the polarizable continuum model (PCM).

Spin isomer	${f def 2-tzvp+svp}^a$										
_	ϵ (Ha)	H_{corr} (Ha)	S^c (cal/mol·K)								
S_{max}	-19465.0044729	.760413	463.045								
BS1	-19465.0121735	0.760775	461.202								
BS4	-19465.0247350	0.760705	460.067								
BS5	-19465.0301836	0.761163	461.578								
BS6	-19465.0389620	0.760267	466.057								
BS7	-19465.0305170	0.760063	465.906								
BS8	-19465.0221957	0.760673	462.351								
BS9	-19465.0294930	0.760717	458.401								
BS10	-19465.0429030	0.760326	462.694								

a def2-tzvp was used for all Fe atoms; def2-svp was used for all other atoms. b Correction factor for the enthalpy. c S here stands for entropy.

Table S11: Additional investigated spin configurations for the α -isomer at the B3LYP/def2-svp+tzvp level of theory. The integers given in each row for J_i are prefactors n_i used to construct a linear equation according to equation S1. Entries marked with * were used together with the BS set for fitting (dataset X). The others were used to test the predictive ability of the method, using the parameters from dataset X (see table S12). Δ E is relative to S_{max} .

Species	Flipped spins ^{a}	\mathbf{S}^{b}	J_2	J_{1a}	J_{1b}	ϵ (Ha)	Found $\Delta E \ (\mathrm{cm}^{-1})$	Predicted $\Delta E \ (\mathrm{cm}^{-1})$
x1	13	27.5	180	0	0	-19465.03038	-5686	-5773 ± 82
x2	$1,\!13$	22.5	165	30	30	-19465.03357	-6385	-6462 ± 77
x3	1,8	22.5	30	60	60	-19465.01415	-3620	-3302 ± 42
x4*	$1,\!4,\!8,\!11,\!12,\!13$	2.5	105	120	90	-19465.0364		
x5	8,11	22.5	30	60	30	-19465.01424	-2143	-2332 ± 33
x6	8, 9, 11, 12	12.5	60	60	90	-19465.02869	-5316	-5234 ± 57
$\mathbf{x7}$	8,9,12	17.5	45	60	90	-19465.02552	-4620	-4753 ± 55
x8	$1,\!11,\!13$	17.5	150	60	60	-19465.03409	-6500	-7151 ± 79
x9*	$2,\!3,\!6,\!8,\!12,\!13$	2.5	105	120	120	-19465.04128		
x10	$2,\!3,\!4,\!6,\!7,\!8$	7.5	90	90	120	-19465.03753	-7255	-7366 ± 81
x11	$3,\!6,\!7,\!9,\!10$	7.5	75	120	90	-19465.03194	-6029	-6114 ± 77
x12*	$1,\!6,\!7,\!8,\!10$	7.5	75	120	60	-19465.02741		
x13*	$3,\!4,\!8,\!12,\!13$	7.5	120	120	30	-19465.03023		
x14	$3,\!5,\!6,\!7,\!8,\!13$	2.5	105	90	90	-19465.03655	-7039	-6877 ± 76
x15	$10,\!11,\!12,\!13$	12.5	135	0	90	-19465.03761	-7273	-7241 ± 75
x16	$3,\!5,\!6,\!8,\!10,\!13$	2.5	105	120	120	-19465.04079	-7971	-8047 ± 92
x17*	$1,\!2,\!3,\!4,\!8,\!13$	2.5	105	60	120	-19465.03923		
x18	$2,\!6,\!8,\!10,\!11,\!12$	2.5	90	90	120	-19465.03673	-7079	-7366 ± 81
x20*	$1,\!6,\!7$	17.5	45	90	0	-19465.01379		
x21*	$11,\!12$	22.5	30	30	60	-19465.01813		
x22	2,3,4	17.5	45	60	60	-19465.02186	-3816	-3783 ± 44
x23*	1,4,12	17.5	45	90	60	-19465.02238		
x24*	$9,\!12,\!13$	17.5	150	60	60	-19465.03682		
x25*	$3,\!4,\!13$	17.5	150	60	30	-19465.03263		
x26	1,2,6,7	12.5	60	90	30	-19465.02011	-3432	-3493 ± 51
x27	1,3,4,7	12.5	60	90	60	-19465.02506	-4519	-4464 ± 57
x28	1,2,3,4	12.5	60	30	90	-19465.02954	-5502	-5035 ± 53
x29	6, 9, 12, 13	12.5	135	90	90	-19465.04024	-7850	-7839 ± 85

^{*a*} Fe(III) centres for which the spins have been set to -5/2. All other Fe(III) centres have spins of 5/2.^{*b*} S is the total spin angular momentum.

Method	$J_{1a} \pm \sigma$	$J_{1b} \pm \sigma$	$J_2 \pm \sigma$	Fitting set^b
PBE0/def2-svp	5.52647 ± 3.455	-20.3274 ± 3.672	-46.5883 ± 5.321	BS
PBE0/def2-tzvp+svp	-2.06856 ± 0.9474	-26.5474 ± 1.007	-28.2093 ± 1.459	BS
PBE0/def2-tzvp	-1.56321 ± 9.298	-22.1933 ± 9.880	-43.7769 ± 14.32	BS
B3LYP/def2-svp	-6.91382 ± 1.563	-30.766 ± 1.66	-37.3467 ± 2.406	BS
$B3LYP/def2-tzvp+svp^{a}$	-6.65384 ± 1.082	-32.8274 ± 1.150	-31.8966 ± 1.667	BS
$B3LYP/def2-tzvp+svp^{a}$	-6.59149 ± 0.4495	-32.3395 ± 0.4761	-32.0749 ± 0.4535	Х
B3LYP/def2-tzvp+svp ^a	-6.15383 ± 1.107	-32.4851 ± 1.221	$-31.8131 {\pm}~ 0.8257$	All
B3LYP/def2-tzvp	-6.04695 ± 2.865	-32.5504 ± 3.044	-38.0232 ± 4.413	BS
M06/def2-tzvp+svp ^a	1.35205 ± 1.574	-22.5191 ± 1.672	-35.2112 ± 2.423	BS
M06/def2-tzvp	1.21197 ± 2.202	-20.9939 ± 2.340	-38.2017 ± 3.391	BS
PBE/def2-svp	-42.8857 ± 11.85	-66.8562 ± 12.59	-103.32 ± 18.25	BS
BP86/def2-svp	-60.0534 ± 27.36	-72.9388 ± 29.07	-107.911 ± 42.13	BS

Table S12: Fitted coupling constants in cm^{-1} for the α -isomer as a function of basis set and exchange correlation functional.

a def2-tzvp was used for all Fe atoms; def2-svp was used for all other atoms. b Denotes which data was used for the fitting. BS used only the BS entries, X used BS and select X entries (see table S11) and All used all BS and X entries.

Table S13: Investigated spin configurations for the β -isomer. The integers given in each row for J_i are prefactors n_i used to construct a linear equation according to equation S1.

Species	Flipped spins ^{a}	\mathbf{S}^{b}	J_2	J_{1a}	J_{1b}
S_{max}	_	32.5	_	_	_
BS1	13	27.5	180	0	0
BS2	1	27.5	15	30	30
BS3	$1,\!6$	22.5	30	60	45
BS4	$5,\!13$	22.5	165	30	30
BS5	$5,\!10$	22.5	30	60	60
BS6	1,2,3	17.5	45	0	90
BS7	$1,\!5,\!8,\!10$	12.5	60	120	90
BS8	$1,\!5,\!6,\!9,\!12$	7.5	75	120	165
BS9	$1,\!4,\!5,\!8,\!10,\!12$	2.5	90	120	90
BS10	2	27.5	15	30	30
BS11	$2,\!13$	22.5	165	30	30
BS12	2,11	22.5	30	60	75
BS13	4,5,6	17.5	45	0	120
BS14	$7,\!8,\!9$	17.5	45	0	120
BS15	2,7,8,9	12.5	60	30	90
BS16	$1,\!2,\!11,\!12,\!13$	7.5	120	60	150
BS17	$1,\!7,\!9,\!11,\!12,\!13$	2.5	105	90	210

^{*a*} Fe(III) centres for which the spins have been set to -5/2. All other Fe(III) centres have spins of 5/2.^{*b*} S is the total spin angular momentum.

Table S14: Energies, including enthalpy and entropy correction terms, of different spin configurations for the β -isomer for the B3LYP exchange and correlation functional. All geometries were optimised with the indicated method for that particular spin state, and with implicit solvation through the polarizable continuum model (PCM). Entries marked with * were used for fitting, together with those in table S15. Δ E is relative to S_{max} at B3LYP/def2-tzvp+svp.

Spin isomer	de	ef2-tzvp+sv	\mathbf{p}^{a}	def2-tzvp	Found	Predicted
	ϵ (Ha)	H_{corr} (Ha)	S^c (cal/mol·K)	ϵ (Ha)	$\Delta E \ (\mathrm{cm}^{-1})$	$\Delta E \ (\mathrm{cm}^{-1})$
S_{max}	-19465.0060446	0.758785	467.93	-19468.5314174		
BS1	-19465.0320581	0.758800	466.978	-19468.5589450	-5709	-5413 ± 593
$BS2^*$	-19465.0127479	0.758723	468.287	-19468.5388696		
BS3	-19465.0164453	0.758967	466.055	-19468.5427421	-2283	-2215 ± 269
BS4	-19465.0359471	0.759000	465.391	-19468.5630956	-6563	-6005 ± 571
$BS5^*$	-19465.0165482	0.759081	463.491	-19468.5426237		
BS6	-19465.0250003	0.758976	465.382	-19468.5514735	-4160	-3672 ± 446
$BS7^*$	-19465.0222049	0.758935	464.048	-19468.5488536		
BS8	-19465.0372426	0.758998	463.830	-19468.5646203	-6847	-6427 ± 739
$BS9^*$	-19465.0263369	0.759117	460.341	-19468.5533583		
BS10	-19465.0129812	0.758894	466.887	-19468.5388754	-1522	$-1494{\pm}181$
BS11	-19465.0354276	0.758966	465.958	-19468.5624713	-6449	-6005 ± 571
BS12	-19465.0198463	0.758887	465.299	-19468.5462200	-3029	-3761 ± 479
$BS13^*$	-19465.0251729	0.759229	466.010	-19468.5517930		
BS14	-19465.0261444	0.759151	465.713	-19468.5524703	-4411	-3672 ± 446
$BS15^*$	-19465.0239121	0.759052	464.923	-19468.5506443		
$BS16^*$	-19465.0415024	0.759229	463.925	-19468.5690747		
BS17	-19465.0403924	0.759587	457.636	-19468.5678754	-7538	-7833 ± 841

a def2-tzvp was used for all Fe atoms; def2-svp was used for all other atoms. b Correction factor for the enthalpy. c S here stands for entropy.

Table S15: Additional investigated spin configurations for the β -isomer at the B3LYP/def2-svp+tzvp level of theory. The integers given in each row for J_i are prefactors n_i used to construct a linear equation according to equation S1. Entries marked with * were used for fitting, and make up dataset X, together with those in table S14. The other entries were used to test the predictive ability of the method using parameters fitted using dataset X. ΔE is relative to S_{max} .

Species	Flipped spins ^{a}	J_2	J_{1a}	J_{1b}	ϵ (Ha)	Found $\Delta E \ (\mathrm{cm}^{-1})$	Predicted $\Delta E \ (\mathrm{cm}^{-1})$
x1	1,2,4,5,8	75	90	90	-19465.0324578	-5797	-5384 ± 578
x2	$1,\!4,\!5,\!7,\!9$	75	90	120	-19465.035981	-6570	-6157 ± 687
$x3^*$	3, 4, 7, 8, 10	75	120	120	-19465.0369565		
$x4^*$	$2,\!6,\!7,\!10,\!12$	75	120	60	-19465.032154		
$\mathbf{x5}$	7,8,10	45	60	60	-19465.0238205	-3901	-3439 ± 378
x6	3,7,8	45	60	90	-19465.0270833	-4617	-4212 ± 492
x7	$3,\!11,\!13$	150	60	60	-19465.0337652	-6084	-6597 ± 605
x8*	$5,\!6,\!8,\!10,\!11,\!13$	105	90	60	-19465.0312718		
x9*	2,6,7,9,10,12	90	120	60	-19465.0339487		
x10*	$1,\!2,\!3,\!4,\!10,\!13$	105	60	90	-19465.0403164		
x11*	$2,\!4,\!6,\!9,\!10$	75	120	90	-19465.0359853		
x12*	$1,\!2,\!6,\!7,\!13$	120	90	30	-19465.0302632		
x13*	$3,\!5,\!6,\!8,\!10,\!13$	105	120	90	-19465.0323229		
x14	6,7,9,11,12	75	90	120	-19465.0322424	-5750	-6157 ± 687
x15*	$1,\!6,\!9,\!11,\!13$	120	120	90	-19465.0345145		
x16	$1,\!2,\!4,\!5,\!8,\!13$	105	90	90	-19465.0368681	-6765	-6287 ± 627
x17	$2,\!3,\!5,\!8,\!10,\!11$	90	120	60	-19465.0311811	-5517	-5332 ± 581
x18*	$3,\!4,\!8,\!11,\!12,\!13$	105	120	60	-19465.0330416		
x20*	10	15	30	0	-19465.0133087		
x21*	$12,\!13$	165	30	30	-19465.0355234		
x22*	$11,\!13$	165	30	60	-19465.0351647		
x23*	$2,\!4,\!6,\!11,\!13$	120	90	150	-19465.0421248		
x24*	$1,\!4,\!10$	45	90	30	-19465.0228944		
x25	$2,\!4,\!7$	45	90	60	-19465.0225154	-3615	-3709 ± 444
x26	2,7,13	150	60	30	-19465.0341141	-6161	-5824 ± 554
x27*	$1,\!11,\!13$	150	60	90	-19465.0366544		
x28*	$11,\!12,\!13$	150	30	90	-19465.0375886		
x29	6, 11, 12, 13	135	60	120	-19465.0388999	-7211	-7692 ± 745

^{*a*} Fe(III) centres for which the spins have been set to -5/2. All other Fe(III) centres have spins of 5/2.

Species	Flipped spins ^{a}	\mathbf{S}^{b}	J_2	J_{1a}	J_{1b}	\mathbf{J}_{1d}
S_{max}	_	32.5	_	_	_	_
BS1	13	27.5	180	0	0	0
BS2	1	27.5	15	30	0	15
BS3	2	27.5	15	30	30	0
BS4	10	27.5	15	30	30	0
BS5	$1,\!6$	22.5	30	60	0	0
BS6	$1,\!13$	22.5	165	30	0	15
BS7	1,2	22.5	30	30	30	15
BS9	1,2,3	17.5	45	0	60	15
BS11	2,7,9	17.5	45	60	30	0
BS12	1,2,3,6	12.5	60	30	60	0
BS13	1,2,3,5,6	7.5	75	30	90	0
BS14	$1,\!2,\!3,\!5,\!6,\!13$	2.5	105	30	90	0
BS15	$3,\!4,\!7,\!8,\!9,\!13$	2.5	105	60	150	0

Table S16: Investigated spin configurations for the γ -isomer. The integers given in each row for J_i are prefactors n_i used to construct a linear equation according to equation S1.

 $\overline{}^{a}$ Fe(III) centres for which the spins have been set to -5/2. All other Fe(III) centres have spins of 5/2.^b S is the total spin angular momentum.

Table S17: Energies, including enthalpy and entropy correction terms, of different spin configurations for the γ -isomer for the B3LYP exchange and correlation functional. All geometries were optimised with the indicated method for that particular spin state, and with implicit solvation through the polarizable continuum model (PCM). Entries marked with * were used for fitting, together with those in table S18. Δ E is relative to S_{max} at B3LYP/def2-tzvp+svp.

Spin isomer	de	ef2-tzvp+svj	\mathbf{p}^{a}	def2-tzvp	Found	Predicted
	ϵ (Ha)	H_{corr} (Ha)	$S^c (cal/mol \cdot K)$	ϵ (Ha)	$\Delta E \ (\mathrm{cm}^{-1})$	$\Delta E \ (\mathrm{cm}^{-1})$
S_{max}	-19465.0069746	0.757718	471.544	-19468.5331620		
$BS1^*$	-19465.0324851	0.758163	465.467	-19468.5601869		
$BS2^*$	-19465.0115025	0.758395	467.082	-19468.5381436		
$BS3^*$	-19465.0139500	0.757937	470.362	-19468.5407071		
BS4	-19465.0140785	0.758165	466.014	-19468.5407627	-1559	-1546 ± 42
$BS5^*$	-19465.0129057	0.758168	468.770	-19468.5397790		
BS6	-19465.0329328	0.758183	468.313	-19468.5610626	-5697	-5759 ± 110
BS7	-19465.0176921	0.758527	466.136	-19468.5447557	-2352	-2371 ± 85
BS9	-19465.0232730	0.758813	462.142	-19468.5504205	-3577	-3541 ± 93
BS11	-19465.0195939	0.758091	465.885	-19468.5468350	-2770	-2684 ± 71
$BS12^*$	-19465.0245284	0.758372	465.381	-19468.5518415		
$BS13^*$	-19465.0304660	0.758467	466.499	-19468.5581326		
BS14	-19465.0345995	0.759008	460.330	-19468.5627121	-6063	-6161 ± 100
$BS15^*$	-19465.0433843	0.759060	459.339	-19468.5717761		

 a def2-tzvp was used for all Fe atoms; def2-svp was used for all other atoms. b Correction factor for the enthalpy. c S here stands for entropy.

Table S18: Additional investigated spin configurations for the γ -isomer at the B3LYP/def2-svp+tzvp level of theory. The integers given in each row for J_i are prefactors n_i used to construct a linear equation according to equation S1. Entries marked with * were used for fitting, and make up dataset X, together with those in table S17. The other entries were used to test the predictive ability of the method using parameters fitted using dataset X. ΔE is relative to S_{max} .

Species	Flipped spins ^{a}	J_2	\mathbf{J}_{1a}	J_{1b}	\mathbf{J}_{1d}	ϵ (Ha)	Found $\Delta E \ (\mathrm{cm}^{-1})$	Predicted $\Delta E \ (\mathrm{cm}^{-1})$
x1	2, 3, 4, 7, 10, 13	105	120	90	0	-19465.03721	-6635	-6726 ± 156
x2	$1,\!3,\!5,\!7,\!13$	120	90	60	12	-19465.0368	-6545	-6478 ± 141
$x3^*$	$1,\!4,\!5,\!6,\!12$	75	60	60	0	-19465.02847		
x4	$2,\!6,\!8,\!9$	60	90	60	15	-19465.0315	-5382	-4580 ± 133
$x5^*$	$5,\!6,\!8,\!13$	135	60	30	15	-19465.03405		
x6	4,9,10,13	135	90	60	0	-19465.03669	-6522	-6603 ± 124
$x7^*$	$1,\!3,\!5,\!8,\!12,\!13$	105	120	60	15	-19465.03453		
x8*	3, 5, 6, 10, 11, 13	105	90	90	15	-19465.03861		
x9*	2,7,9,10,11,12	90	60	90	0	-19465.03487		
x10	$2,\!6,\!7,\!8,\!10,\!12$	90	120	90	15	-19465.03634	-6446	-6601 ± 170
x11*	$1,\!4,\!5,\!8,\!10$	75	120	30	15	-19465.02674		
x12	$1,\!6,\!9,\!10,\!11$	75	120	60	0	-19465.02889	-4809	-4893 ± 139
x13	$3,\!6,\!7,\!12$	60	120	60	15	-19465.02763	-4534	-4768 ± 153
x14*	$2,\!3,\!7,\!10,\!12,\!13$	105	90	90	0	-19465.03652		
x15	$1,\!3,\!5,\!8,\!9,\!13$	105	90	90	15	-19465.03798	-6804	-6887 ± 151
x16	$1,\!2,\!3,\!7,\!11,\!13$	105	60	60	15	-19465.0337	-5865	-5816 ± 120
x17*	$2,\!5,\!6,\!8,\!9,\!10$	90	120	60	15	-19465.03314		
x18	$1,\!6,\!7,\!8,\!11,\!12$	90	120	120	0	-19465.03863	-6949	-7135 ± 170
x20*	6	15	30	0	15	-19465.01174		
x21*	2,7	30	60	30	0	-19465.01715		
x22*	$1,\!12$	30	60	30	15	-19465.01867		
x23*	2,10	30	60	60	0	-19465.02176		
x24*	$10,\!13$	165	30	30	0	-19465.03677		
x25*	$9,\!12,\!13$	150	60	60	0	-19465.03717		
x26*	2,3,13	150	30	60	0	-19465.03751		
x27	$3,\!12,\!13$	150	60	30	0	-19465.03406	-5944	-6006 ± 97
x28*	$3,\!4,\!7$	45	90	90	0	-19465.02779		
x29	$2,\!11,\!12$	45	60	90	0	-19465.02788	-4588	-4451 ± 105

^{*a*} Fe(III) centres for which the spins have been set to -5/2. All other Fe(III) centres have spins of 5/2.

Species	Flipped spins ^{a}	\mathbf{S}^{b}	J_2	J_{1a}	J_{1b}	\mathbf{J}_{1d}
S_{max}	_	32.5	_	_	_	_
BS1	13	27.5	180	0	0	0
BS2	8,13	22.5	165	30	0	15
BS3	$5,\!8$	22.5	30	60	0	0
BS4	1,2,6,7	12.5	60	90	0	0
BS5	$10,\!11,\!12$	12.5	45	0	90	0
BS6	$11,\!12$	22.5	30	30	60	0
BS7	7,8	22.5	30	30	0	30
BS8	6,7,8	17.5	45	60	0	45
BS9	6,7,8,9	12.5	60	30	30	45
BS10	5,7,8,9,10,11	2.5	90	60	30	45
BS11	$7,\!8,\!10,\!11,\!12,\!13$	2.5	105	30	90	30
BS12	$6,\!8,\!10,\!11,\!12$	7.5	75	60	90	30
BS13	$3,\!4,\!9,\!13$	12.5	75	30	90	0
BS14	$3,\!4,\!8,\!9,\!13$	7.5	120	90	90	15
BS15	$10,\!11,\!12,\!13$	7.5	135	0	90	0

Table S19: Investigated spin configurations for the δ -isomer. The integers given in each row for J_i are prefactors n_i used to construct a linear equation according to equation S1.

 a^{a} Fe(III) centres for which the spins have been set to -5/2. All other Fe(III) centres have spins of 5/2.^b S is the total spin angular momentum.

Table S20: Energies, including enthalpy and entropy correction terms, of different spin configurations for the δ -isomer for the B3LYP exchange and correlation functional. All geometries were optimised with the indicated method for that particular spin state, and with implicit solvation through the polarizable continuum model (PCM). Entries marked with * were used for fitting, together with those in table S21. Δ E is relative to S_{max} at B3LYP/def2-tzvp+svp.

Spin isomer	de	ef2-tzvp+svj	\mathbf{p}^{a}	def2- $tzvp$	Found	Predicted
	ϵ (Ha)	H_{corr} (Ha)	$S^c (cal/mol \cdot K)$	ϵ (Ha)	$\Delta E \ (\mathrm{cm}^{-1})$	$\Delta E \ (\mathrm{cm}^{-1})$
$S_m ax$	-19465.0070946	0.769287	456.165	-19468.5344167		
$BS1^*$	-19465.0311457	0.758155	471.070	-19468.5602286		
BS2	-19465.0316664	0.758374	468.546	-19468.5611106	-5393	-5309 ± 100
$BS3^*$	-19465.0121696	0.757964	470.297	-19468.5404629		
$BS4^*$	-19465.0184402	0.758285	466.678	-19468.5470871		
$BS5^*$	-19465.0256962	0.758635	463.903	-19468.5542097		
$BS6^*$	-19465.0195784	0.758743	465.253	-19468.5478371		
BS7	-19465.0145524	0.758538	467.454	-19468.5428957	-1637	-1601 ± 66
BS8	-19465.0181586	0.758482	470.744	-19468.5468719	-2428	-2475 ± 104
$BS9^*$	-19465.0237666	0.758587	466.287	-19468.5525870		
BS10	-19465.0257929	0.758416	466.008	-19468.5548099	-4104	-4132 ± 80
BS11	-19465.0370372	0.759088	459.886	-19468.5664779	-6572	-6497 ± 121
$BS12^*$	-19465.0331178	0.759231	464.033	-19468.5624778		
$BS13^*$	-19465.0392050	0.759273	462.314	-19468.5689249		
BS14	-19465.0391452	0.759221	462.647	-19468.5688558	-7034	$\textbf{-}6952 \pm 131$
$BS15^*$	-19465.0381709	0.758641	464.608	-19468.5673980		

 a def2-tzvp was used for all Fe atoms; def2-svp was used for all other atoms. b Correction factor for the enthalpy. c S here stands for entropy.

Table S21: Additional investigated spin configurations for the δ -isomer at the B3LYP/def2-svp+tzvp level of theory. The integers given in each row for J_i are prefactors n_i used to construct a linear equation according to equation S1. Entries marked with * were used for fitting, and make up dataset X, together with those in table S20. The other entries were used to test the predictive ability of the method using parameters fitted using dataset X. ΔE is relative to S_{max} .

Species	Flipped spins ^{a}	J_2	J_{1a}	J_{1b}	\mathbf{J}_{1d}	ϵ (Ha)	Found $\Delta E \ (\mathrm{cm}^{-1})$	Predicted $\Delta E \ (\mathrm{cm}^{-1})$
x1*	3, 5, 6, 8, 13	120	90	30	15	-19465.03091		
$x2^*$	2, 3, 6, 11, 12, 13	105	90	30	30	-19465.02918		
x3	4,8,10,11,12,13	105	60	60	15	-19465.03327	-5745	-5468 ± 98
x4	1,5,7,8,10,12	90	120	60	30	-19465.03133	-5320	-5604 ± 134
$x5^*$	$1,\!3,\!7,\!9,\!11,\!13$	105	90	30	30	-19465.03173		
x6	$2,\!4,\!6,\!9,\!10,\!12$	90	120	30	30	-19465.02898	-4803	-4711 ± 125
$x7^*$	$3,\!6,\!8,\!13$	135	90	30	30	-19465.03428		
x8	$3,\!5,\!8,\!10$	60	120	60	0	-19465.0251	-3951	-4150 ± 114
x9*	$2,\!4,\!7,\!8,\!10$	75	120	30	15	-19465.02517		
x10	$2,\!6,\!7,\!12,\!13$	120	120	30	15	-19465.03114	-5277	-5315 ± 122
x11	$2,\!3,\!4,\!5,\!11,\!13$	105	90	60	30	-19465.0345	-6015	-5899 ± 123
x12	$1,\!3,\!5,\!7,\!9,\!12$	90	120	60	45	-19465.03286	-5655	-5887 ± 150
x13*	$1,\!2,\!3,\!5,\!6,\!9$	90	60	60	30	-19465.03165		
x14	3, 4, 5, 7, 12	75	120	30	30	-19465.02562	-4067	-4267 ± 122
x15	$4,\!6,\!8,\!10,\!11$	75	90	60	30	-19465.03031	-5096	-5012 ± 116
x16*	$4,\!6,\!7,\!8,\!12,\!13$	105	90	30	45	-19465.03036		
x17	1,2,3,4,5,8	90	60	60	30	-19465.03079	-5201	-5308 ± 107
x18*	$3,\!4,\!9,\!10,\!11,\!13$	105	120	30	0	-19465.02756		
x20*	11	15	30	30	0	-19465.01328		
x21*	1,7	30	60	0	30	-19465.01466		
x22*	9,13	165	30	30	0	-19465.03343		
x23*	9,12	30	60	60	0	-19465.02045		
x23*	5,9	30	60	30	15	-19465.01785		
x25	1,5,8	45	90	0	15	-19465.01567	-1882	-2057 ± 80
x26	1,4,10	45	90	30	15	-19465.0195	-2722	-2950 ± 85
x27	1,2,12	45	60	30	30	-19465.0202	-2876	-3085 ± 85
x28*	$3,\!4,\!13$	150	60	60	0	-19465.03661		
x29	$1,\!3,\!8,\!13$	135	60	30	30	-19465.03378	-5856	-5746 ± 111

^a Fe(III) centres for which the spins have been set to -5/2. All other Fe(III) centres have spins of 5/2.

Species	Flipped spins ^{a}	\mathbf{S}^{b}	J_2	J_{1a}	J_{1b}	\mathbf{J}_{1d}
S_{max}	_	32.5	_	_	_	_
BS1	13	27.5	180	0	0	0
BS2	1	27.5	165	30	0	15
BS3	$1,\!6$	22.5	30	60	0	0
BS4	1,2,3	17.5	60	90	0	0
BS5	$1,\!4,\!8,\!10$	12.5	45	0	90	0
BS6	1,2,6,7,12	7.5	30	30	60	0
BS7	$1,\!2,\!3,\!6,\!7,\!12$	7.5	30	30	0	30
BS8	1,2,3,4,5,6	2.5	45	60	0	45
BS9	3, 5, 8, 12	12.5	60	30	30	45
BS11	5, 8, 9, 11	12.5	90	60	30	45
BS12	10, 11, 12,	17.5	105	30	90	30
BS13	$7,\!8,\!9,\!10,\!11,\!12$	2.5	75	60	90	30

Table S22: Investigated spin configurations for the ϵ -isomer. The integers given in each row for J_i are prefactors n_i used to construct a linear equation according to equation S1.

 $\overline{}^{a}$ Fe(III) centres for which the spins have been set to -5/2. All other Fe(III) centres have spins of 5/2.^b S is the total spin angular momentum.

Table S23: Energies, including enthalpy and entropy correction terms, of different spin configurations for the ϵ -isomer for the B3LYP exchange and correlation functional. All geometries were optimised with the indicated method for that particular spin state, and with implicit solvation through the polarizable continuum model (PCM). Entries marked with * were used for fitting, together with those in table S24. Δ E is relative to S_{max} at B3LYP/def2-tzvp+svp.

Spin isomer	de	ef2-tzvp+sv	\mathbf{p}^{a}	def2- $tzvp$	Found	Predicted
	ϵ (Ha)	H_{corr} (Ha)	$S^c (cal/mol \cdot K)$	ϵ (Ha)	$\Delta E \ (\mathrm{cm}^{-1})$	$\Delta E \ (\mathrm{cm}^{-1})$
S_{max}	-19464.9963446	0.757269	466.024	-19468.5279268		
$BS1^*$	-19465.0187709	0.757565	465.704	-19468.5516775		
$BS2^*$	-19465.0002740	0.756912	473.450	-19468.5321476		
BS3	-19465.0011233	0.757152	468.128	-19468.5333139	-1049	-1014 ± 36
BS4	-19465.0067713	0.757054	469.938	-19468.5389996	-2248	-2111 ± 53
BS5	-19465.0077015	0.756619	471.388	-19468.5403874	-2493	-2610 ± 79
$BS6^*$	-19465.0131694	0.756894	468.557	-19468.5463908		
BS7	-19465.0121423	0.756929	466.913	-19468.5450399	-3467	-2759 ± 62
$BS8^*$	-19465.0132411	0.756737	466.114	-19468.5457561		
BS9	-19465.0058395	0.756955	468.167	-19468.5386937	-2048	-2028 ± 71
BS11	-19465.0052641	0.756957	465.699	-19468.5380585	-1958	-1934 ± 56
$BS12^*$	-19465.0053570	0.757022	468.413	-19468.5375754		
BS13	-19465.0132030	0.756308	470.576	-19468.5457873	-3700	-3639 ± 76

 a def2-tzvp was used for all Fe atoms; def2-svp was used for all other atoms. b Correction factor for the enthalpy. c S here stands for entropy.

Table S24: Additional investigated spin configurations for the ϵ -isomer at the B3LYP/def2-svp+tzvp level of theory. The integers given in each row for J_i are prefactors n_i used to construct a linear equation according to equation S1. Entries marked with * were used for fitting, and make up dataset X, together with those in table S23. The other entries were used to test the predictive ability of the method using parameters fitted using dataset X. Δ E is relative to S_{max}.

Species	Flipped spins ^{a}	J_2	J_{1a}	J_{1d}	ϵ (Ha)	Found $\Delta E \ (\mathrm{cm}^{-1})$	Predicted $\Delta E \ (\mathrm{cm}^{-1})$	
x1	2,13	165	30	0	15	-19465.0185617	-4876	-4924 ± 72
x2	2,7,13	150	60	0	0	-19465.0158955	-4291	-4315 ± 70
x3	$3,\!12,\!13$	150	60	0	0	-19465.0156031	-4227	-4315 ± 70
x4	1,2,6,7,13	120	90	0	0	-19465.0127536	-3601	-3584 ± 70
$x5^*$	5,8,13	150	60	0	0	-19465.0159445	-4302	
$x6^*$	$3,\!5,\!8,\!10$	60	120	0	30	-19465.0079799	-2554	
$x7^*$	1,12	30	60	0	30	-19465.0038232	-1641	
x8	2,3	30	30	0	30	-19465.003784	-1633	-1501 ± 39
x9*	$1,\!3$	30	30	0	30	-19465.0042545	-1736	
x10*	$1,\!5,\!7,\!8,\!11,\!13$	105	120	0	45	-19465.0145123	-3987	
x11*	2, 4, 6, 7, 12	75	120	0	45	-19465.0113905	-3302	
x12*	$3,\!5,\!12,\!13$	135	90	0	15	-19465.0156888	-4246	
x13	$4,\!5,\!7,\!8,\!11,\!13$	105	90	0	45	-19465.0134133	-3746	-4044 ± 83
x14*	$1,\!3,\!4,\!9,\!10,\!11$	90	120	0	30	-19465.0121495	-3469	
x15*	$5,\!6,\!8,\!9,\!11,\!12$	90	90	0	30	-19465.0120362	-3444	

^a Fe(III) centres for which the spins have been set to -5/2. All other Fe(III) centres have spins of 5/2.

Figure S7: Distances for spin couplings in the S_{max} spin state of different Keggin isomers. Geometries optimised at B3LYP/def2-tzvp+svp. Only the BS data sets were used.

Figure S8: Energies of the different isomers in their highest spin state relative to the ϵ isomer in the highest spin state for geometries optimised using different exchange correlation functionals with the def2-tzvp+svp basis set combination. PCM was used for PBE0, B3LYP and PBE. SMD was used for M06. Only the BS data set was used.

Figure S9: Energies of the different broken symmetry states of the α -isomer relative to the highest spin state for different combinations of basis sets and exchange correlation functionals. Only the BS data set was used. Note that the vertical axis shows - ΔE .

Figure S10: Fitted antiferromagnetic coupling constants for the α isomer for different combinations of basis sets and exchange correlation functionals. Note that the vertical axis shows -J. Only the BS data set was used.

Figure S11: Predicted energies of the different broken symmetry states of the α -isomer relative to the highest spin state for different combinations of basis sets and exchange correlation functionals. Uncertainties propagated according to equation S2. Only the BS data set was used.

Figure S12: Predicted energies at B3LYP/def2-tzvp+svp of the different broken symmetry states of the β - ϵ isomers, relative to the highest spin state of each isomer. Uncertainties propagated according to equation S2. The extended data set was used

Figure S13: Computed energies of the S_{max} (black) and lowest energy (blue) spin configuration for each isomer at PBE0, B3LYP and M06 with the def2-tzvp+svp basis set. Implicit solvation was used (PCM for PBE0 and B3LYP; SMD for M06).

Figure S14: The lowest spin configurations for each Baker-Figgis isomer of the Keggin ion. Blue and green indicate positive and negative spin, respectively. An isodensity value of 0.04 was used to render the figures. Top: α (left), β (right). Middle: γ (left), δ (right). Bottom: ϵ .

J_generator

The source code for J_generator.py is given below (listing S2). Usage is described in the comments in the code, and consists of providing three arguments – which Keggin isomer to use, whether to remove energy/J coupling duplicates, and whether to generate sets of linear equations or to compute energies based on fitted coupling constants.

A partial example output for the command ./J_generator.py a 1 0 is given below. This command can be used to generate sets of linear equations for ΔE as a function of the coupling constants.

#Spin E dE J2 J1a J1b J2 J1a J1b Spins 66 0.00 0.00 0 0 0 0.00 0.00 0.00 [] 56 180.00 180.00 180 0 0 1.00 0.00 0.00 [13] 56 75.00 45.00 15 30 30 0.20 0.40 0.40 [12] 46 225.00 170.37 165 30 30 0.73 0.13 0.13 [12, 13] 46 120.00 73.48 30 30 60 0.25 0.25 0.50 [11, 12]

The first row is a header row.

The first row of output is for the S_{max} state with a multiplicity of 66. The second row of output states that there is a spin state (header 'Spin') with a multiplicity of 56. The next two items, 180.00 (header 'E') and 180.00 (header 'dE') have no meaning here, since no energy is computed. The next three items, 180, 0 and 0 (headers 'J2', 'J1a' and 'J1b') shows how the linear equation for ΔE is constructed: $\Delta E = 180 \cdot J_2 + 0 \cdot J_{1a} + 0 \cdot J_{1b}$. The next three items (the second set of headers 'J2', 'J1a' and 'J1b') are not relevant here since no energy is computed. The final [13] (header 'Spins') states that the spin state is achieved by inverting the spin of atom 13.

A partial example output for the command ./J_generator.py a 1 1 is given below. This command computes the energies of the different spin states based on fitted coupling constants. The coupling constants are provided by the user directly in the code.

#Spin E dE J2 J1a J1b J2 J1a J1b Spins 66 0.00 0.00 0 0 0.00 0.00 0.00 [] 56 -5773.48 81.63 -5773 0 0 1.00 -0.00 -0.00 [13] 56 -1650.85 20.79 -481 -199 -970 0.29 0.12 0.59 [12] 46 -6462.09 77.36 -5292 -199 -970 0.82 0.03 0.15 [12, 13] 46 -3102.16 34.39 -962 -199 -1940 0.31 0.06 0.63 [11, 12]

The first row is a header row.

The first row of output is for the S_{max} state with a multiplicity of 66. The second row of output states that there is a spin state (header 'Spin') with a multiplicity of 56. The next two items, -5773.48 (header 'E') and 81.63 (header 'dE') are the energy ΔE (in cm⁻¹) and uncertainty of the spin state relative to the S_{max} state. The next three items, -5773, 0 and 0 (headers 'J2', 'J1a' and 'J1b') shows the absolute contribution of each coupling constant to the computed energy. The next three items (the second set of headers 'J2', 'J1a' and 'J1b') Show the relative (i.e. fraction) contribution of each coupling constant to the energy. The final [13] (header 'Spins') states that the spin state is achieved by inverting the spin of atom 13.

Systems are defined as functions in spinmatrices.py. An example function is

```
def getExample():
    #Mini is for testing/development purposes. The atoms are at the corner of a square. Direct
    neighbours couple via J1a, diagonals couple via J2.
    JName=['0','J2','J1a','J1b','J1c','0','0','0','0','0','0','0','0']
    J=[[0,4,3,4], \
    [4,0,2,1], \
    [3,2,0,2], \
```

```
[4,1,2,0]]
SpinArray =[5.0/2.0,5.0/2.0,5.0/2.0]
JValue=[0,-28.2502,-3.92415,1,1,0,0,0,0,0,0,0] # For testing
JValueError=[0,1.13,1.206,2,2,0,0,0,0,0,0,0]# For testing
return J, JName, SpinArray, JValue, JValueError
```

JName defines arbitrary names for the different coupling constants.

J is the spin coupling matrix. For example, atom 2 couple with atom 4 via coupling constant number 1 (here J_2 ; arrays in python start at 0) and with atom 1 via coupling constant number 4 (J_{1c}).

The spin array defines the spin of the atoms in the spin matrix.

JValue and JValueError contain the fitted values of the coupling constants and the standard errors. If they aren't known, the following can be used instead:

 $JValue= \begin{bmatrix} 0 & \text{if } x=='0' & \text{else 1 for x in JName} \end{bmatrix}$ $JValueError= \begin{bmatrix} 0 & \text{if } x=='0' & \text{else 1 for x in JName} \end{bmatrix}$

Once a system has been defined in spinmatrices.py, it needs to be added to the getData(Isomer) routine at the end of the spinmatrices.py file.

```
def getData(Isomer):
    if Isomer=='a':
        J,JName,SpinArray,JValue,JValueError=getAlpha()
...
    elif Isomer=='example': #For testing/development purposes
        J,JName,SpinArray,JValue,JValueError=getExample()
    return J,JName,SpinArray,JValue,JValueError
```

It can now be called with ./J_generator.py example 1 0. The full program listings follow:

```
#!/usr/bin/python
  import sys
  import itertools
  import numpy as np
  from heapq import nlargest
  from math import sqrt
  import spinmatrices
   Written by Andy Ohlin
   Umea University, Sweden
12
   20/11/2019
   * Can handle mixed valence
14
   * Systems are defined in a module file (spinmatrices.py)
   * DO NOT EDIT THIS FILE
   Usage Examples:
18
   general command: program isomer terse mode
20
   * isomer can be any system defined in spinmatrices.py, such as a which is presently
      corresponding to the alpha-epsilon isomers of the Keggin ion,
   or mini, which is a test system. ALL systems should be defined in spinmatrices.py
^{22}
   * terse is 0 or 1. If 1, then all duplicates (i.e. energetically degenerate states) with
      the same J formulae are remove
```

```
* mode is 0 or 1. If 0, J formulae are generated. If 1, energies are calculated, with error
24
        propagation, using provided coupling constants.
26
   Examples:
   python J_generator.py a 0 0 — compute all permutations of couplings for isomer a (alpha). python J_generator.py a 1 0 — compute all permutations of couplings, but removes all
28
       duplicates, whether incidental or symmetry-based. Terse=1
    python J_generator.py a 0 1 -- compute energies from fitted parameters. Terse=0 will allow
        duplicates.
30
   , , ,
32
  def GenSpecies(J):
     AllPermutationsX = list(itertools.product([1, -1], repeat=len(J)))
34
     AllSpecies =[]
     for n in range(0, len(AllPermutationsX)):
36
       Spins = []
       for m in range(0, len(AllPermutationsX[n])):
38
         Spins+=[AllPermutationsX[n][m]*SpinArray[m]]
       AllSpecies+=[Spins]
40
     return AllSpecies
42
  def getMax(J):
    maximum=0
44
     for n in J:
       for m in n:
46
         if m>maximum:
           maximum⊐m
48
     return maximum
50
  def GenCoupling(n, J):
     JList = [0] * (getMax(J)+1)
54
     for m in range (0, len(n)):
       for k in range (0, len(n)):
         if not (m=k) and not (n[m]=n[k]) and not (abs(n[m])/abs(n[k])=(n[m]/n[k])):
56
           JList [J[m][k]] = JList [J[m][k]] + 2*(SpinArray[m]*SpinArray[k])+SpinArray[k]
58
     for l in range(0,len(JList)):
60
       JList[1] = JList[1]/2.0
     Spin=0
62
     for l in n:
       Spin+=1
64
     Spin=2*abs(Spin)
66
     return JList, Spin
68
  def checkpresence(stuff, mylist):
    TF=0
70
     for n in mylist:
       if stuff == n[4]:
72
         TF=1
     return TF
74
76 def checkjeq(jeq,spin,mylist):
    TF=0
78
     for n in mylist:
       if jeq==n[2]:
          if int(spin) = n[0]:
80
           TF=1
     return TF
82
84 if _____ main___":
    Isomer=sys.argv[1]
```

```
Terse=int (sys.argv[2])
86
     Predict=int(sys.argv[3])
88
  ## DON'T EDIT THIS FILE
90 ## ALL DATA IS COLLECTED FROM SPINMATRICES.PY
     J, JName, SpinArray, JValue, JValueError = spinmatrices.getData(Isomer)
92
     if Predict==0:
       JValue= [0 if x=='0' else 1 for x in JName]
94
       JValueError= [0 if x=='0' else 1 for x in JName]
96
     JList = [0] * (max(max(J)) + 1)
98
   #Check symmetry of spin matrix
     for n in range (0, len(J)):
       for m in range (0, len(J)):
         if not (J[n][m]-J[m][n]==0):
            print 'Asymmetry', n,m
106
     #Generates all possible spin flip combinations
     AllSpecies=GenSpecies(J)
108
     #Generate linear equations and compute spins
     Species = []
     for n in AllSpecies:
       Couplings, Spin=GenCoupling(n,J)
114
       Js=Couplings
       JTot = 0.0
116
       # Energy
118
       EnergyDifference=0
       EnergyError=0
120
       Jeq = [0] * (getMax(J)+1)
       for m in range (0, (getMax(J)+1)):
         Jeq[m]+=Js[m]*JValue[m]
124
          JTot+=Jeq [m]
         EnergyDifference+=JValue [m] * Js [m]
126
         EnergyError+=JValueError [m] * JValueError [m] * Js [m] * Js [m]
128
       # Generate percentage contributions
       JContrib = [0] * (getMax(J)+1)
130
       for m in range (0, (getMax(J)+1)):
          if JTot==0:
            JContrib [m]=0.0
          else:
134
            JContrib [m]=float (Jeq [m]/JTot)
136
       #Find flipped spins
       positions = [i+1 \text{ for } i, x \text{ in } enumerate(n) \text{ if } x < 0]
138
       Flipped=positions
140
       if len(Flipped) > (len(J)/2): #Fixed
          positions=list(set(range(1,len(J)+1))-set(Flipped)) #Fixed
          positions.sort()
       #Weed out dupes:
       if not checkpresence(positions, Species):
146
          if Terse == 1:
            if not ( checkjeq(Jeq, Spin, Species)):
148
              Species += [[int (Spin)+1, EnergyDifference, Jeq, JContrib, positions, sqrt (EnergyError)
       11
```

```
elif Terse==0:
150
            Species +=[[int(Spin)+1, EnergyDifference, Jeq, JContrib, positions, sqrt(EnergyError)]]
   # print Species
     JNames=
154
     for n in JName:
156
       if not n=='0':
         JNames += str (n) + '\t'
     StringToWrite='#Spin \t E \t dE \t %s %s Spins \n' % (str(JNames), str(JNames))
158
     print StringToWrite
160
     for Specie in Species:
       StringToWrite=''
164
       StringToWrite='%s\t' % str(Specie[0])
       StringToWrite+='%5.2f\t' % float(Specie[1])
166
       StringToWrite+='%3.2f\t' % float(Specie [5])
168
       #J coupling equation
       Jeqstr='
       for n in range(0, len(Specie[2])):
172
          if not JName[n] = 0:
174
            Jeqstr += \% (Specie[2][n])
       StringToWrite+=Jeqstr
       \#J contribution
178
       Jeqstr='
       for n in range (0, \text{len}(\text{Specie}[3])):
180
          if not JName[n] = 0:
            Jeqstr = \%1.2 f t \%(Specie[3][n])
182
       StringToWrite+=Jeqstr
184
       StringToWrite+=str(Specie[4])
       print StringToWrite
186
```

Listing S1: Source code for the J_generator.py software

```
J -
  JName ---
  SpinArray ---
  If 'mode' is 1, for each system the following also needs to be defined:
  JValue
  JValueError ---
  NOTE: You also need to point to the right function in getData() at the end of this file,
      which takes the
  command-line argument regarding system to use
13
  , , ,
17 def getAlpha():
   # The alpha Fe(III)13 Baker-Figgis-Keggin isomer
    19
    \#Spin coupling matrix
21
    J = \left[ \begin{bmatrix} 0 & 2 & 2 & 0 & 0 & 3 & 3 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \  \  \, \setminus
       \left[2\,,\ 0\,,\ 2\,,\ 0\,,\ 0\,,\ 0\,,\ 0\,,\ 3\,,\ 3\,,\ 0\,,\ 0\,,\ 1\,\right],
       [2, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 1],
23
```

```
\begin{bmatrix} 0 \ , \ 0 \ , \ 0 \ , \ 2 \ , \ 0 \ , \ 3 \ , \ 0 \ , \ 3 \ , \ 0 \ , \ 1 \end{bmatrix},
25
                     [3, 0, 0, 2, 2, 0, 3, 0, 0, 0, 0, 0, 1],
                     [3, 0, 0, 0, 0, 3, 0, 2, 2, 0, 0, 0, 1],
27
                     \begin{bmatrix} 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 3 \ , \ 0 \ , \ 2 \ , \ 0 \ , \ 3 \ , \ 0 \ , \ 1 \end{bmatrix},
                     \begin{bmatrix} 0 & , & 3 & , & 0 & , & 0 & , & 0 & , & 2 & , & 2 & , & 0 & , & 3 & , & 0 & , & 1 \end{bmatrix}
29
                     [0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 2, 2, 1],
                                                                                                                                 [0, 0, 0, 0, 3, 0, 0, 3, 0, 2, 0, 2, 1],
31
                     [0, 0, 3, 3, 0, 0, 0, 0, 0, 2, 2, 0, 1],
                    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
33
           #Spins of the centres in the coupling matrix
35
           SpinArray
                 = [5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0
37
      #
                 Fitted data:
     #
                 Only used when mode is 1. Not needed for mode 0.
39
           #JValue = [0, -35.2112, 1.35205, -22.5191, 0, 0, 0, 0, 0, 0, 0, 0] # M06/svp+tzvp w smd
           #JValueError = [0, 2.423, 1.574, 1.672, 0, 0, 0, 0, 0, 0, 0, 0, 0] # M06/svp+tzvp w smd
41
           \#JValue = [0, -107.911, -60.0534, -72.9388, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] \#BP86/svp+tzvp w pcm
43
           \#JValueError = [0, 42.13, 27.36, 29.07, 0, 0, 0, 0, 0, 0, 0, 0, 0] \# BP86/svp+tzvp w pcm
           \#JValue = [0, -28.2093, -2.06856, -26.5474, 0, 0, 0, 0, 0, 0, 0, 0, 0] \#PBE0/svp+tzvp w pcm
           #JValueError = [0, 1.459, 0.9474, 1.007, 0, 0, 0, 0, 0, 0, 0, 0, 0] # PEB0/svp+tzvp w pcm
45
           #JValue=[0,-31.8966,-6.65384,-32.874,0,0,0,0,0,0,0,0,0] # b3lyp/svp+tzvp w pcm -- only BS
                set
           #JValueError = [0,1.667,1.082,1.150,0,0,0,0,0,0,0,0,0] # b3lyp/svp+tzvp w pcm --- only BS set
47
           JValue = \begin{bmatrix} 0, -32.0749, -6.65149, -32.3395, 0, 0, 0, 0, 0, 0, 0, 0 \end{bmatrix} \# b3lyp/svp+tzvp w pcm X set
           JValueError = [0,0.4535,0.4495,0.4761,0,0,0,0,0,0,0,0,0] # b3lyp/svp+tzvp w pcm X set
49
           return J, JName, SpinArray, JValue, JValueError
51
53 def getBeta():
           # The beta Fe(III)13 Baker-Figgis-Keggin isomer
           # beta 2=j1a, 3=j1b, 1=j2, 4=j1c
55
           57
                     [2, 0, 2, 0, 0, 0, 3, 0, 3, 0, 0, 0, 1],
59
                     [2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 1],
                     \left[ {3\,,\ 0\,,\ 0\,,\ 0\,,\ 2\,,\ 2\,,\ 0\,,\ 0\,,\ 0\,,\ 0\,,\ 3\,,\ 1} \right],
                     [0, 0, 0, 2, 0, 2, 0, 3, 0, 0, 3, 0, 1],
61
                     [3, 0, 0, 2, 2, 0, 3, 0, 0, 0, 0, 0, 1],
                     \begin{bmatrix} 0 \ , \ 3 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 1 \ ] \ ,
63
                     \begin{bmatrix} 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 3 \ , \ 0 \ , \ 2 \ , \ 0 \ , \ 3 \ , \ 0 \ , \ 1 \end{bmatrix},
                     \begin{bmatrix} 0 & , & 3 & , & 0 & , & 0 & , & 0 & , & 2 & , & 2 & , & 0 & , & 3 & , & 0 & , & 1 \end{bmatrix}
65
                     [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1],
                     [0, 0, 3, 0, 3, 0, 0, 3, 3, 2, 0, 2, 1],
67
                     \begin{bmatrix} 0 \ , \ 0 \ , \ 3 \ , \ 3 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 2 \ , \ 2 \ , \ 0 \ , \ 1 \end{bmatrix},
                    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
69
           SpinArray
71
                 = [5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0
           #JValue=[0, -32.9785, 1.83288, -29.7841, 0, 0, 0, 0, 0, 0, 0, 0]# b3lyp/svp+tzvp w pcm -- only BS set
73
           #JValueError = [0,1.566,2.684,2.274,0,0,0,0,0,0,0,0,0] # b3lyp/svp+tzvp w pcm -- only BS set
           JValue = \begin{bmatrix} 0, -30.0717, -8.99948, -25.7675, 0, 0, 0, 0, 0, 0, 0, 0 \end{bmatrix} \# b3lyp/svp+tzvp w pcm X set
75
           JValueError = [0,3.295,3.445,4.675,0,0,0,0,0,0,0,0,0]# b3lyp/svp+tzvp w pcm X set
77
           return J, JName, SpinArray, JValue, JValueError
      def getGamma():
79
           # The gamma Fe(III)13 Baker-Figgis-Keggin isomer
81
           83
```

```
85
                      [0, 0, 0, 0, 2, 2, 0, 0, 0, 3, 0, 3, 1],
                      \begin{bmatrix} 0 & , & 0 & , & 2 & , & 0 & , & 2 & , & 3 & , & 3 & , & 0 & , & 0 & , & 0 & , & 1 \end{bmatrix}
 87
                      [5, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1],
                      [0, 3, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 1],
 89
                      \begin{bmatrix} 0 & , & 3 & , & 0 & , & 0 & , & 0 & , & 2 & , & 2 & , & 0 & , & 3 & , & 0 & , & 1 \end{bmatrix}
 91
                      [0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 2, 2, 1],
                      [0, 0, 3, 0, 0, 0, 0, 0, 3, 2, 0, 2, 1],
 93
                      [0\,,\ 0\,,\ 3\,,\ 3\,,\ 0\,,\ 0\,,\ 0\,,\ 0\,,\ 2\,,\ 2\,,\ 0\,,\ 1]
                     [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
 95
             SpinArray
 97
                  = [5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0
             \#JValue=[0, -31.1054, -6.77049, -29.046, 0, -24.4109, 0, 0, 0, 0, 0, 0] \# b3lyp/svp+tzvp w pcm
            \#JValueError = [0, 0.2046, 0.4864, 0.2716, 0, 1.717, 0, 0, 0, 0, 0, 0, 0] \# b3lyp/svp+tzvp w pcm
 99
             JValue = \begin{bmatrix} 0, -31.6417, -6.27393, -29.4497, 0, -23.3231, 0, 0, 0, 0, 0, 0 \end{bmatrix} \ \# \ b3lyp/svp+tzvp \ w \ pcm \ X \ set
             JValueError = [0,0.4647,1.026,0.9103,0,4.839,0,0,0,0,0,0] # b3lyp/svp+tzvp w pcm X set
             return Jgamma, JNameGamma, SpinArray, JValueGamma, JValueGammaError
       def getDelta():
            J\!=\!\left[\left[ 0\;,\ 2\;,\ 2\;,\ 0\;,\ 0\;,\ 5\;,\ 0\;,\ 0\;,\ 0\;,\ 0\;,\ 0\;,\ 1\;\right],
                      \begin{bmatrix} 2 \ , \ 0 \ , \ 2 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 1 \ \end{bmatrix},
                      [2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 1],
                      [0, 0, 0, 0, 2, 2, 0, 0, 0, 3, 0, 3, 1],
                      [0, 0, 0, 2, 0, 2, 0, 5, 0, 0, 0, 0, 1],
                      [5, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1],
                                                                                                                        1],
                      [0, 5, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0]
                      [0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 3, 3, 0, 1],
                      [0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 2, 2, 1],
                      [0\,,\ 0\,,\ 3\,,\ 0\,,\ 0\,,\ 0\,,\ 0\,,\ 3\,,\ 2\,,\ 0\,,\ 2\,,\ 1]\,,
                      [0, 0, 3, 3, 0, 0, 0, 0, 0, 2, 2, 0, 1]
                                                                                                                                   /
                     [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]]
119
             SpinArray
                  = [5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0
            \#JValue=[0, -29.806, -5.07834, -30.0776, 0, -15.1673, 0, 0, 0, 0, 0, 0] \# b3lyp/svp+tzvp w pcm
             \#JValueError = [0, 0.7859, 1.42, 1.18, 0, 2.581, 0, 0, 0, 0, 0, 0] \# b3lyp/svp+tzvp w pcm
             JValue = [0, -29.5641, -4.92424, -29.759, 0, -18.8791, 0, 0, 0, 0, 0, 0] \# b3lyp/svp+tzvp w pcm X set
             JValueError = [0,0.5596,0.7783,0.9269,0,1.995,0,0,0,0,0,0] # b3lyp/svp+tzvp w pcm X set
             return J, JName, SpinArray, JValue, JValueError
       def getEpsilon():
129
             JValue= [0 if x=='0' else 1 for x in JName]
131
             JValueError= [0 if x="0' else 1 for x in JName]
133
              \begin{split} J = & \begin{bmatrix} [ \ 0 \ , \ 2 \ , \ 2 \ , \ 0 \ , \ 0 \ , \ 5 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 1 \ ] \ , \\ & \begin{bmatrix} 2 \ , \ 0 \ , \ 2 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 1 \ ] \ , \end{split} 
135
                      [2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 1],
                      \begin{bmatrix} 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 0 \ , \ 1 \ \end{bmatrix},
                      [0, 0, 0, 2, 0, 2, 0, 5, 0, 0, 0, 1],
                      5.
                             0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1],
                                                                                                                       1],
                      \begin{bmatrix} 0 \end{bmatrix}
                                       0, 0, 0, 0, 0, 2,
                                                                                        2,
                                                                                               0, 0, 0, 0,
                              5,
                      [0, 0, 0, 0, 5, 0, 2, 0, 2, 0, 0, 0, 1],
                      [0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 5, 0, 1],
                      [0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 2, 2, 1],
                                                                                                                                   [0\,,\ 0\,,\ 0\,,\ 0\,,\ 0\,,\ 0\,,\ 0\,,\ 5\,,\ 2\,,\ 0\,,\ 2\,,\ 1]\,,
145
                     [0, 0, 5, 0, 0, 0, 0, 0, 0, 2, 2, 0, 1],
```

```
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]]
147
         SpinArray
              = [5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0
         \#JValue = [0, -28.2502, -3.92415, 0, 0, -18.7115, 0, 0, 0, 0, 0, 0, 0] \# b3lyp/svp+tzvp w pcm
         #JValueError = [0,1.13,1.206,0,0,2.474,0,0,0,0,0,0] # b3lyp/svp+tzvp w pcm
         JValue = [0, -27.5094, -3.14517, 0, 0, -19.3922, 0, 0, 0, 0, 0, 0] \# b3lyp/svp+tzvp w pcm X set
         JValueError = [0, 0.4107, 0.5585, 0, 0, 1.115, 0, 0, 0, 0, 0, 0] # b3lyp/svp+tzvp w pcm X set
         return J, JName, SpinArray, JValue, JValueError
155 def getExample():
         #Example is for testing/development purposes. The atoms are at the corner of a square.
             Direct neighbours couple via J1a, diagonals couple via J2.
         \mathbf{J}\!=\![\,[\,0\,\,,4\,\,,3\,\,,4\,]\,\,,\  \,\backslash
                [4, 0, 2, 1],
                [3, 2, 0, 2],
161
                [4, 1, 2, 0]]
         SpinArray = [5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0]
163
         \#JValue = [0, -28.2502, -3.92415, 1, 1, 0, 0, 0, 0, 0, 0, 0] \# For testing
         #JValueError = [0, 1.13, 1.206, 2, 2, 0, 0, 0, 0, 0, 0, 0] # For testing
         JValue= [0 if x=='0' else 1 for x in JName]
         JValueError= [0 if x='0' else 1 for x in JName]
167
         return J, JName, SpinArray, JValue, JValueError
     def getIs():
171
         #is --- iron-sulfur cluster --- [Fe6S6Cl6]-. Atom 6 is Fe(II), rest are Fe(III). S bridges.
             Cl terminal.
         # Czerwinski, INt J. Quant Chem, 1999, 72, 39
         \mathbf{J} = [ [0, 3, 4, 2, 2, 1] ,
                [3, 0, 2, 4, 2, 1],
                [4, 2, 0, 3, 2, 1],
                \left[2, 4, 3, 0, 2, 1\right],
                [2, 2, 2, 2, 2, 0, 1],
                [1, 1, 1, 1, 1, 1, 0]]
181
         SpinArray = [5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 5.0/2.0, 4.0/2.0]
183
         #JValue=[0, -28.2502, -3.92415, 1, 1, 0, 0, 0, 0, 0, 0, 0] # For testing
185
         #JValueError = [0,1.13,1.206,2,2,0,0,0,0,0,0,0,0] # For testing
         JValue= [0 if x="0' else 1 for x in JName]
187
         JValueError= [0 if x='0' else 1 for x in JName]
189
         return J, JName, SpinArray, JValue, JValueError
191
      def getData(Isomer):
          if Isomer="'a':
193
             J, JName, SpinArray, JValue, JValueError=getAlpha()
          elif Isomer=='b':
195
             J, JName, SpinArray, JValue, JValueError=getBeta()
          elif Isomer="g':
197
             J, JName, SpinArray, JValue, JValueError=getGamma()
199
          elif Isomer="'d':
             J, JName, SpinArray, JValue, JValueError=getDelta()
          elif Isomer=='e':
201
             J, JName, SpinArray, JValue, JValueError=getEpsilon()
          elif Isomer='example': #For testing/development purposes
203
             J, JName, SpinArray, JValue, JValueError=getExample()
          elif Isomer="is": #For testing/development purposes
205
             J, JName, SpinArray, JValue, JValueError=getIs()
```

Listing S2: Source code for spinmatrices.py software