Investigation on the mechanism of overall water splitting in UV-visible

and infrared region with SnC/Arsenene vdW heterostructures in

different configurations

Jian Chai, Zhong Wang*, Yuee Li*

School of information science and engineering, Lanzhou University, China

<u>*liyuee@lzu.edu.cn</u> wangzhong@lzu.edu.cn

Supporting information

Fig. S1 Flat band based on the atoms of with SnC/Arsenene heterostructure in (a) H2 , (b)H3 configuration based on the HSE06 functional. The PDOS of SnC/Arsenene heterostructure in (c) H2, (d) H3 configuration

Fig. S2 Calculated electrostatic potentials for monolayer (a) As, (b) SnC, SnC/Arsenene heterostructure in (c)H1, (d)H2, (e)H3 configuration

Fig. S3 The relationship between oxidation potential and reduction potential of water splitting corresponding to different PH values and CBM and VBM of SnC/Arsenene heterostructure in (a) H2,(b) H3 configuration

Fig. S4 Flat band based on the atoms(left) and the partial charge density of CBM and VBM(right), (the isovalue is $0.002e/A^{-3}$) of SnC/Arsenene heterostructure in H3 configuration as functions of the in-layer biaxial strain: (a) -2%, (b) -4%, (c) 2%, (d)4%

Fig. S5 The relationship between oxidation potential and reduction potential of water splitting as functions of PH values and CBM and VBM of SnC/Arsenene heterostructure in H3 configurationcorresponding to different in-layer biaxial strains: (a) -2%, (b) -4%, (c) 2%, (d)4%

Fig. S6 The phonon spectrum of SnC/Arsenene heterostructure in H3 configuration at (a) 0%, (b)+2%, (c) +4% biaxial strain, respectively, (d) biaxial Strain applied on SnC/Arsenene heterostructure in H3 configuration