Supporting Information

High Mobility in α-Phosphorene Isostructures with the Low Deformation Potential

Ruhao Fang^{1,4}, *Xiangyuan Cui*^{*,2,3}, *Catherine Stampfl*¹, *Simon P. Ringer*^{2,3}, *Rongkun Zheng*^{*,}^{1,3,4}

1 School of Physics, The University of Sydney, New South Wales 2006, Australia

2 School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney,

New South Wales 2006, Australia

3 Australian Centre for Microscopy and Microanalysis, The University of Sydney, New South

Wales 2006, Australia

4 Nano Institute, The University of Sydney, New South Wales 2006, Australia

S1 Anisotropic effective mass of two carriers in all structures

Table S1. Anisotropic effective mass (m_{ij}) of both hole (h) and electrons (e) of α -phosphorene isostructures, unit (m_e)

isostructures	hole mass in the zigzag direction	hole mass in the armchair	electron mass in the zigzag	electron mass in the armchair
	(m_{hx})	direction (m_{hy})	direction (m_{ex})	direction (m_{ey})
α-phosphorene	4.99	0.15	1.24	0.17
α- arsenene	1.45	0.21	1.16	0.35
α -graphane	0.29	0.96	1.03	0.84
α-silicane	0.22	1.21	0.15	3.77
a-PAs	1.67	0.20	1.16	0.23
α-PCH	9.03	0.39	0.58	0.80
α-PSiH	9.19	0.48	0.20	1.34
α-AsCH	7.52	0.44	0.60	0.91
α-AsSiH	6.03	0.48	0.17	1.01
α-CHSiH	0.32	1.30	0.80	1.15

S2 The spercific values of carrier mobility of both carriers in all structures

isostructures	$\mu_{ m hx}$	$\mu_{ m hy}$	$\mu_{ m ex}$	$\mu_{ m ey}$
α-phosphorene	2.70×10 ⁴	8.91×10 ²	9.23×10 ¹	1.60×10 ³
α- arsenene	3.01×10 ²	6.11×10 ¹	1.19×10^{2}	1.12×10 ²
α-graphane	1.77×10 ²	6.37×10 ¹	3.67×10 ³	4.60×10 ⁵
α-silicane	7.74×10 ²	3.60×10 ²	2.94×10 ²	4.82
a-PAs	9.14×10 ¹	3.50×10 ²	1.05×10 ²	1.96×10 ⁴
α-PCH	1.26×10 ¹	1.52×10^{1}	4.31×10 ²	8.81×10 ³
α-PSiH	7.77×10^{1}	1.43×10 ¹	2.61×10 ²	1.64×10 ¹
α-AsCH	1.36×10 ¹	2.03×10^{1}	9.88×10 ²	1.14×10 ⁴
α-AsSiH	1.71×10^{2}	1.41×10 ²	5.59×10 ²	3.99×10 ¹
α-CHSiH	2.35×10 ²	1.63×10 ¹	8.64×10 ²	3.37×10^{1}

Table S2. Anisotropic carrier mobility (μ_{ij}) of both hole (h) and electrons (e) of α -phosphorene isostructures, unit (cm²V⁻¹s⁻¹)

S3 The calculation details of carrier mobility and its key parameters of β -graphane

Figure S1 The anisotropic geometry structure of β -graphane. *x* represents the zigzag direction while *y* represents the armchair direction.

Table S3. The calculation	details of β -graphane
---------------------------	------------------------------

directions	carrier type	lattice constant (Å)	т	E	C _{2D}	μ
The zigzag	hole	2.51	0.60	1.52	0.05	6.08×10 ²
<i>(x)</i>	electron	2.31	0.25	6.04	0.93	5.68×10 ¹
The	hole		1.01	0.72		6.24×10 ²
armchair (y)	electron	4.34	0.98	0.82	0.59	3.11×10 ²

The β -graphane has the similar structure to β -phosphorene (the blue phosphorus). The comparison of values of carrier mobility between β -graphane to α -graphane is similar to that between β -phosphorene and α -phosphorene. The carrier mobility of β -graphane is quite small compared to α -graphane. And these results are in agreement with the experimental measurement¹⁻³.

S4 Elastic Modulus of these structures

Table S4 Calculated elastic Moduli (unit	: kBar) for variou	is structures based	l on DFT-GGA.
--	--------------------	---------------------	---------------

isostructures	<i>C</i> ₁₁	<i>C</i> ₁₂	C ₂₂	<i>C</i> ₁₃	C ₂₃	C ₃₃	<i>C</i> ₄₄	C ₅₅	C ₆₆
α- arsenene	114.35	63.29	187.34	190.49	48.56	250.26	18.88	48.22	163.28
α -graphane	1104.8	194.43	1268.5	302.43	227.36	1500.4	387.89	651.38	664.86
α-silicane	341.50	24.93	375.50	141.51	134.46	375.32	54.46	219.05	181.64
α-PAs	183.82	118.76	290.55	267.97	90.61	508.12	60.11	103.26	297.57
α-PCH	641.05	119.08	744.41	252.47	132.41	1063.5	251.98	427.17	471.14
α-PSiH	336.11	41.77	373.55	169.27	81.92	415.30	66.96	187.87	226.27
α-AsCH	285.15	57.54	428.20	185.88	88.70	562.48	124.89	247.53	242.26
α-AsSiH	297.30	31.79	348.10	173.44	72.10	402.51	58.77	1732.9	209.98
α-CHSiH	621.99	57.50	689.03	199.13	223.99	679.69	146.39	409.05	345.79

S5 Calculated vibrational frequency diagrams for various structures based on DFT-GGA

(a) phosphorene

References

 Bianco, E.; Butler, S.; Jiang, S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: a germanium graphane analogue. *ACS Nano* **2013**, *7* (5), 4414-4421.
 Jiang, S.; Arguilla, M. Q.; Cultrara, N. D.; Goldberger, J. E. Covalently-controlled properties by design in group IV graphane analogues. *Accounts of Chemical Research* **2014**, *48* (1), 144-151. 3. Elias, D. C.; Nair, R. R.; Mohiuddin, T.; Morozov, S.; Blake, P.; Halsall, M.; Ferrari, A.; Boukhvalov, D.; Katsnelson, M.; Geim, A. Control of graphene's properties by reversible hydrogenation: evidence for graphane. *Science* **2009**, *323* (5914), 610-613.