Electronic Supplementary Information

Mechanism of Mg Extraction from MgMn₂O₄ during Acid Digestion

Kingo Ariyoshi* and Shumpei Masuda

Figure S1. Powder X-ray diffraction patterns of $MgMn_2O_4$: (a) as-prepared and (b) simulated.

Figure S2. Results of classical Rietveld refinement of MgMn₂O₄ assuming a space group of $I4_1/amd$. Reliability factor defined by $\Sigma |I_{obs} - I_{calc}| / \Sigma I_{obs}$, where I_{obs} and I_{calc} are the observed and calculated integrated intensities, respectively, are plotted against two oxygen positional parameters.

Figure S3. Results of the structural refinement of MgMn₂O₄ assuming the replacement with Mn and Mg ions at the tetrahedral and octahedral sites, respectively, i.e., Mg₁. $_{y}$ Mn_y[Mg_yMn_{2-y}]O₄. The structural refinement was performed by using 112, 200, and 211 diffraction lines. The reliability factor is given by $\Sigma |I_{obs} - I_{calc}| / \Sigma I_{obs}$, where I_{obs} and I_{calc} are the observed and calculated integrated intensities, respectively.

Figure S4. SEM images of $MgMn_2O_4$ (a, b) before and (c, d) after digestion in 1 M HNO₃ solution for 16 h.

Figure S5. (a) Powder X-ray diffraction patterns of $MgMn_2O_4$ in the pristine state (black) and after acid digestion in 0.5 M (red) and 1.0 M (blue) HNO₃ solutions. (b) Difference XRD patterns obtained by point-by-point subtraction of the patterns in Fig. 1a and 1g from that in Fig. 1e.

The calibration curve for determining the phase fraction was produced using the ratio of integrated intensity for the strongest XRD lines of MgMn₂O₄ and λ -MnO₂.

1. First, XRD patterns were collected for physically mixed samples of the pristine $MgMn_2O_4$ and single-phase λ -MnO₂ at a ratio of 3:1, 1:1, or 1:3 by weight. The λ -MnO₂ was obtained by treating MgMn₂O₄ in 1.0 M HNO₃.

Figure S6. Peak fitting of the XRD lines for mixtures of $MgMn_2O_4$ and λ -MnO₂ in the weight ratio of (a) 3:1, (b) 1:1, and (c) 1:3. Black circles: experimental values. Coloured lines: $MgMn_2O_4$ (blue) and λ -MnO₂ (green).

- 2. After peak separation (Figure S6), the integrated intensity was estimated for the main peak of each phase (111 for both MgMn₂O₄ and λ -MnO₂) in the mixed sample.
- 3. When the mole fraction of λ -MnO₂ in the mixed sample was x_A , the relative integrated intensity for λ -MnO₂ (f_A) was calculated from the integrated intensity of the main peaks of λ -MnO₂ and MgMn₂O₄ (I_A and I_B , respectively).

$$f_A = \frac{x_A I_A}{x_A I_A + (1 - x_A) I_B}$$

The obtained f_A is plotted against x_A in Figure S7.

Figure S7. Relative integrated intensity of the 111 diffraction line of λ -MnO₂ (f_A) determined from the XRD data in Figure S7, versus the mole fraction of λ -MnO₂ (x_A).

4. To determine the calibration curve, the above equation was rewritten using $\alpha = I_A/I_B$ as follows

$$f_A = \frac{\alpha x}{1 + (1 - \alpha)x}, \quad \alpha = \frac{I_A}{I_B}$$

The calibration curve with a value of $\alpha = 1.3$ (black line in Fig. S8) best describes the data observed for the three mixed samples.

- Using this calibration curve, the fraction of phases in the acid-digested samples shown in Figs. 7 & 9 was determined from the integrated intensity ratio of the strongest lines.
- 6. Since single-phase Mg_{0.5}Mn₂O₄ could not be obtained, its fraction was calculated in the same manner by assuming that the integrated intensity of its strongest line is intermediate between MgMn₂O₄ and λ -MnO₂ ($\alpha = 1.15$)."

Figure S8. The mole fractions of $MgMn_2O_4$ (blue circles), $Mg_{0.5}Mn_2O_4$ (red triangles), and Mn_2O_4 (green squares) as a function of the acid digestion time. Solid curves indicate the fraction of each phase calculated by assuming two-step two-phase reactions (pathways 1 and 2). The data were analysed based on the following differential equations, which were solved numerically.

$$df(MgMn_2O_4)/dt = -k_1 f(MgMn_2O_4)$$

$$df(Mg_{0.5}Mn_2O_4)/dt = k_1 f(MgMn_2O_4) - k_2 f(Mg_{0.5}Mn_2O_4)$$

$$df(Mn_2O_4)/dt = k_2 f(Mg_{0.5}Mn_2O_4)$$

HNO ₃	H ⁺ in solution	Mn ²⁺ in solution	Residual mass	Fraction by XRD			x in Mg _x Mn₂O₄
 М	mmol	mmol	mg	MgMn ₂ O ₄	$Mg_{0.5}Mn_2O_4$	$\square Mn_2O_4$	
0.1	3	6.8	911	94.0	6.0	0	0.97
0.25	7.5	19.3	774	71.4	9.3	19.3	0.76
0.3	9.0	25.1	729	62.9	8.6	28.4	0.67
0.4	12	31.7	662	37.7	18.4	43.9	0.47
0.5	15	36.3	605	14.6	24.5	60.9	0.27
0.6	18	42.8	512	0	9.8	90.2	0.05
1.0	30	42.6	503	0	8.2	91.8	0.04

Table S1. Summary of the acid digestion of $MgMn_2O_4$ powder in HNO_3 solutions with

various concentrations.